{-# OPTIONS --type-in-type --no-termination-check #-}

module UtilitiesI where

open import NeilPrelude
open import Maybe
open import List
open import RealTime
open import SigVecsI
open import TimeDeltaList
open import TimeDeltaListProps
open import StrictTotalOrder

------------------------------------------------------

lastChangeTime : {A : Set}  ChangeList A  Time
lastChangeTime = sumTDL

lookupCP : {A : Set}  ChangePrefix A  Time  Maybe A
lookupCP cp t = lookupTDL (cp t) t

occ : {A : Set}  SigVec (E A)  Time  Maybe A 
occ (ma , _)  O  = ma
occ (_  , cp) t  = lookupCP cp t

change : {A : Set}  SigVec (S A)  Time  Maybe A 
change (a , _)  O  = just a 
change (_ , cp) t  = lookupCP cp t

------------------------------------------------------

val : {A : Set}  SigVec (S A)  Time  A
val (a₀ , cp) t with reverse (cp t)
... | []             = a₀
... | (_ , a₁)  _   = a₁

leftLimit : {A : Set}  SigVec (S A)  Time⁺  A
leftLimit (a₀ , cp) t with reverse (takeExcl⁺ t (cp (t >0)))
... | []             = a₀
... | (_ , a₁)  _   = a₁

------------------------------------------------------

mapCL : {A B : Set}  (A  B)  ChangeList A  ChangeList B
mapCL = mapTDL

mapCP : {A B : Set}  (A  B)  ChangePrefix A  ChangePrefix B
mapCP = result  mapCL

mapCPtime : {A B : Set}  (Time  A  B)  ChangePrefix A  ChangePrefix B
mapCPtime = result  mapTDLtime

mapCPtime⁺ : {A B : Set}  (Time⁺  A  B)  ChangePrefix A  ChangePrefix B
mapCPtime⁺ = result  mapTDLtime⁺

mapC : {i : Init}  {A B : Set}  (A  B)  SigVec (C i A)  SigVec (C i B)
mapC {ini} = result
mapC {uni} = result

mapE : {A B : Set}  (A  B)  SigVec (E A)  SigVec (E B)
mapE f (ma , cp) = (maybeMap f ma , mapCP f cp)

mapS : {A B : Set}  (A  B)  SigVec (S A)  SigVec (S B)
mapS f (a , cp) = (f a , mapCP f cp)

mapC2 : {i₁ i₂ : Init}  {A B Z : Set}  (A  B  Z)  SigVec (C i₁ A)  SigVec (C i₂ B)  SigVec (C (i₁  i₂) Z)
mapC2 {ini} {ini} f s1 s2 = λ t  f (s1 t) (s2 t)
mapC2 {ini} {uni} f s1 s2 = λ t  f (s1 (t >0)) (s2 t)
mapC2 {uni} {ini} f s1 s2 = λ t  f (s1 t) (s2 (t >0))
mapC2 {uni} {uni} f s1 s2 = λ t  f (s1 t) (s2 t)

mapS2 : {A B Z : Set}  (A  B  Z)  SigVec (S A)  SigVec (S B)  SigVec (S Z)
mapS2 {A} {B} {Z} f (a , cpa) (b , cpb) = (f a b , λ t  mergeS a b (cpa t) (cpb t))
  where
        mergeS : A  B  ChangeList A  ChangeList B  ChangeList Z
        mergeS a₀ b₀ [] δbs = mapCL (f a₀) δbs
        mergeS a₀ b₀ δas [] = mapCL (flip f b₀) δas
        mergeS a₀ b₀ ((δ₁  , a₁)  δas) ((δ₂ , b₁)  δbs) with compareℜ⁺ δ₁ δ₂
        mergeS a₀ b₀ ((.δ₂ , a₁)  δas) ((δ₂ , b₁)  δbs) | refl   = (δ₂ , f a₁ b₁)  mergeS a₁ b₁ δas δbs
        mergeS a₀ b₀ ((δ₁  , a₁)  δas) ((δ₂ , b₁)  δbs) | less p = (δ₁ , f a₁ b₀)  mergeS a₁ b₀ δas (((δ₂ ⁺-⁺ δ₁) p , b₁)  δbs)
        mergeS a₀ b₀ ((δ₁  , a₁)  δas) ((δ₂ , b₁)  δbs) | more p = (δ₂ , f a₀ b₁)  mergeS a₀ b₁ (((δ₁ ⁺-⁺ δ₂) p , a₁)  δas) δbs


mergeE2 : {A B Z : Set}  (A  Z)  (B  Z)  (A  B  Z)  SigVec (E A)  SigVec (E B)  SigVec (E Z)
mergeE2 {A} {B} {Z} fa fb fab (ma , cpa) (mb , cpb) = (maybeMerge fa fb fab ma mb , λ t  mergeCL (cpa t) (cpb t))
  where
        mergeCL : ChangeList A  ChangeList B  ChangeList Z
        mergeCL [] δbs = mapCL fb δbs
        mergeCL δas [] = mapCL fa δas
        mergeCL ((δ₁  , a)  δas) ((δ₂ , b)  δbs) with compareℜ⁺ δ₁ δ₂
        mergeCL ((.δ₂ , a)  δas) ((δ₂ , b)  δbs) | refl   = (δ₂ , fab a b)  mergeCL δas δbs
        mergeCL ((δ₁  , a)  δas) ((δ₂ , b)  δbs) | less p = (δ₁ , fa a)  mergeCL δas (((δ₂ ⁺-⁺ δ₁) p , b)  δbs)
        mergeCL ((δ₁  , a)  δas) ((δ₂ , b)  δbs) | more p = (δ₂ , fb b)  mergeCL (((δ₁ ⁺-⁺ δ₂) p , a)  δas) δbs

joinE2 : {A B Z : Set}  (A  B  Z)  SigVec (E A)  SigVec (E B)  SigVec (E Z)
joinE2 {A} {B} {Z} f (ma , cpa) (mb , cpb) = (maybeMap2 f ma mb , λ t  joinCL O (cpa t) (cpb t))
  where
        joinCL : Time  ChangeList A  ChangeList B  ChangeList Z
        joinCL _ [] _  = []
        joinCL _ _  [] = []
        joinCL d ((δ₁ , a)  δas) ((δ₂ , b)  δbs) with compareℜ⁺ δ₁ δ₂
        joinCL d ((.δ₂ , a)  δas) ((δ₂ , b)  δbs) | refl   = (d ₀+⁺ δ₂ , f a b)  joinCL O δas δbs
        joinCL d ((δ₁ , a)  δas)  ((δ₂ , b)  δbs) | less p = joinCL ((d ₀+⁺ δ₁) >0) δas (((δ₂ ⁺-⁺ δ₁) p , b)  δbs)
        joinCL d ((δ₁ , a)  δas)  ((δ₂ , b)  δbs) | more p = joinCL ((d ₀+⁺ δ₂) >0) (((δ₁ ⁺-⁺ δ₂) p , a)  δas) δbs

mapCE : {i : Init}  {A B Z : Set}  (A  B  Z)  SigVec (C i A)  SigVec (E B)  SigVec (E Z)
mapCE {ini} f s (mb , cp) = maybeMap (f (s O)) mb , mapCPtime (f  s) cp
mapCE {uni} f s (mb , cp) = nothing , mapCPtime⁺ (f  s) cp

mapSE : {A B Z : Set}  (A  B  Z)  SigVec (S A)  SigVec (E B)  SigVec (E Z)
mapSE f s (mb , cp) = (maybeMap (f (val s O)) mb , mapCPtime (f  val s) cp)

------------------------------------------------------

-- When we delay a change prefix we may have an initial value to include

delayCP : {A : Set}  Maybe A  Time⁺  ChangePrefix A  ChangePrefix A
delayCP ma d cp t with compareGeqℜ₀ t (d >0)
delayCP ma d cp t | less p = []
delayCP ma d cp t | geq  p = delayTDLinit ma d (cp (ℜ₀⁺₀-minus t d p))

advanceCP : {A : Set}  Time  ChangePrefix A  ChangePrefix A
advanceCP d cp t = advanceTDL d (cp (t ₀+₀ d))

advance : {as : SVDesc}  Time  SigVec as  SigVec as
advance {C ini _} d s = λ t  s (t ₀+₀ d)
advance {C uni _} d s = λ t  s (t ⁺+₀ d)
advance {S _}     d s = val s d , advanceCP d (snd s)
advance {E _}     d s = occ  s d , advanceCP d (snd s)
advance {as , bs} d (s₁ , s₂) = (advance {as} d s₁ , advance {bs} d s₂)


------------------------------------------------------

-- takeExclEnd ignores a change at the sample time, and also returns the remaining time after the last change (which thus has to be positive) 

lem-sumCLexcl : {A : Set}  (t : Time⁺)  (cp : ChangePrefix A)  sumTDL (takeExcl⁺ t (cp (t >0))) <ℜ₀ (t >0)
lem-sumCLexcl t cp = lemTDL-sumTakeExcl⁺ t (cp (t >0))

takeExclEnd : {A : Set}  ChangePrefix A  Time⁺  ChangeList A × Δt
takeExclEnd cp t =  let δas = takeExcl⁺ t (cp (t >0))
                    in δas , ℜ⁺₀⁺-minus t (lastChangeTime δas) (lem-sumCLexcl t cp)

-- takeExclEnd takes a change list upto but excluding the specified time
-- it also returns a time delta which is the time remaining after the (resultant) final change and the specified time

-- firstOcc returns the first occurrence upto the specified time.  If the first occurrence is after this time it will return nothing

fstOcc : {A : Set}  SigVec (E A)  Time  Maybe (Time × A)
fstOcc (just a  , _) _ = just (O , a)
fstOcc (nothing , cp) t with cp t
... | []          = nothing
... | (δ , a)  _ = just (δ >0 , a)

spliceC : {i : Init}  {A : Set}  SigVec (C i A)  SigVec (C ini A)  EventTime  SigVec (C i A)
spliceC {ini} s₁ s₂ te = λ t  ifℜ₀ t  te thengeq  p  s₂ (ℜ₀-minus t te p)) elseless λ _  s₁ t
spliceC {uni} s₁ s₂ te = λ t  ifℜ₀ t >0  te thengeq  p  s₂ (ℜ₀-minus (t >0) te p)) elseless λ _  s₁ t

spliceS : {A : Set}  SigVec (S A)  SigVec (S A)  EventTime  SigVec (S A)
spliceS (a₁ , cp₁) (a₂ , cp₂) O = (a₂ , cp₂)
spliceS (a₁ , cp₁) (a₂ , cp₂) (te >0) with takeExclEnd cp₁ te
... | δas₁ , δ = a₁ , λ t  ifℜ₀ t  te >0
                             thengeq  p  δas₁ ++ (δ , a₂)  cp₂ (ℜ₀⁺₀-minus t te p))
                             elseless  _  cp₁ t)

spliceE : {A : Set}  SigVec (E A)  SigVec (E A)  EventTime  SigVec (E A)
spliceE (ma₁ , cp₁) (ma₂ , cp₂) O       = (ma₂ , cp₂)
spliceE (ma₁ , cp₁) (ma₂ , cp₂) (te >0) with takeExclEnd cp₁ te
... | (δas₁ , δ) = ma₁ , λ t  ifℜ₀ t  te >0
                                thengeq  p  δas₁ ++ delayTDLinit ma₂ δ (cp₂ (ℜ₀⁺₀-minus t te p)))
                                elseless  _  cp₁ t)

splice : {as : SVDesc}  SigVec as  SigVec (iniSV as)  EventTime  SigVec as
splice {C i _}    s₁           s₂           te  = spliceC {i} s₁ s₂ te
splice {S _}      s₁           s₂           te  = spliceS s₁ s₂ te
splice {E _}      s₁           s₂           te  = spliceE s₁ s₂ te
splice {as , bs}  (sa₁ , sb₁)  (sa₂ , sb₂)  te  = splice {as} sa₁ sa₂ te , splice {bs} sb₁ sb₂ te

------------------------------------------------------

withTime : {as : SVDesc}  (SampleTime  SigVec as)  SigVec as
withTime {C ini _} f = λ t  f t t
withTime {C uni _} f = λ t  f (t >0) t
withTime {E _}     f = (fst (f O) , λ t  snd (f t) t)
withTime {S _}     f = (fst (f O) , λ t  snd (f t) t)
withTime {as , bs} f = (withTime {as} (fst  f) , withTime {bs} (snd  f))

------------------------------------------------------