{-# OPTIONS --type-in-type #-}

open import NeilPrelude
open import Bool

module List where

infixr 16 _∷_
infixr 15 _++_

data List (A : Set) : Set where
  []   : List A
  _∷_  : A  List A  List A

{-# BUILTIN LIST List #-}
{-# BUILTIN NIL  []  #-}
{-# BUILTIN CONS _∷_ #-}

[_] : {A : Set}  (a : A)  List A
[ a ] = a  []

--- Non-Empty Lists ----------------------

-- data NonEmptyList (A : Set) : Set where
--   _∷_ : A → List A → NonEmptyList A

--- List Functions -----------------------

wrap : {A : Set}  (a : A)  List A
wrap a = a  []


listcases : {A : Set}  {P : List A  Set}  P []  ((a : A)  (as : List A)  P (a  as))  (as : List A)  P as
listcases b _ [] = b
listcases _ f (a  as) = f a as

-- foldr is the non-dependent version of listrec

foldr : {A B : Set}  (B  A  A)  A  List B  A
foldr f a []       = a
foldr f a (b  bs) = f b (foldr f a bs)

foldl : {A B : Set}  (A  B  A)  A  List B  A
foldl f a []       = a
foldl f a (b  bs) = foldl f (f a b) bs

_++_ : {A : Set}  List A  List A  List A
[] ++ bs = bs
(a  as) ++ bs = a  (as ++ bs)

map : {A B : Set}  (A  B)  List A  List B
map f [] = []
map f (a  as) = f a  map f as

{-
_++_ : {A : Set} → List A → List A → List A
as ++ bs = foldr _∷_ bs as

map : {A B : Set} → (A → B) → List A → List B
map f = foldr (\a → _∷_ (f a)) []
-}

open import Maybe

head : {A : Set}  List A  Maybe A
head []       =  nothing
head (a  _)  =  just a

safehead : {A : Set}  A  List A  A
safehead a = fromMaybe a  head

concat : {A : Set}  List (List A)  List A
concat = foldr _++_ []

rev : {A : Set}  List A  List A  List A
rev ac []       = ac
rev ac (a  as) = rev (a  ac) as

reverse : {A : Set}  List A  List A
reverse as = rev [] as

slowreverse : {A : Set}  List A  List A
slowreverse []        = []
slowreverse (a  as)  = slowreverse as ++ a  []

partition : {A : Set}  (A  Bool)  List A  List A × List A
partition p = foldr (\a  if p a then first (_∷_ a) else second (_∷_ a)) ([] , [])

filter : {A : Set}  (A  Bool)  List A  List A
filter p [] = []
filter p (a  as) = (if p a then (_∷_ a) else id) (filter p as)

null : {A : Set}  List A  Bool
null = listcases true  _ _  false)

nonEmpty : {A : Set}  List A  Bool
nonEmpty = not  null

zipWith : {A B C : Set}  (A  B  C)  List A  List B  List C
zipWith f [] bs = []
zipWith f as [] = []
zipWith f (a  as) (b  bs) = f a b  zipWith f as bs

zip : {A B : Set}  List A  List B  List (A × B)
zip = zipWith _,_

unzip : {A B : Set}  List (A × B)  List A × List B
unzip = foldr (×-map2 _∷_ _∷_) ([] , [])

 : List Bool  Bool
 = foldr _∨_ false

 : List Bool  Bool
 = foldr _∧_ true

all : {A : Set}  (A  Bool)  List A  Bool
all p =   map p

any : {A : Set}  (A  Bool)  List A  Bool
any p =   map p

safeinit : {A : Set}  A  List A  List A
safeinit _ [] = []
safeinit a (b  as) = a  safeinit b as

init : {A : Set}  List A  List A
init [] = []
init (a  as) = safeinit a as

safelast : {A : Set}  A  List A  A
safelast a []       = a
safelast _ (b  as) = safelast b as

last : {A : Set}  List A  Maybe A
last []       = nothing
last (a  as) = just (safelast a as)

span : {A : Set}  (A  Bool)  List A  List A × List A
span p [] = [] , []
span p (a  as) = if p a
                   then first (_∷_ a) (span p as)
                   else ([] , a  as)

takeWhile : {A : Set}  (A  Bool)  List A  List A
takeWhile p = fst  span p

dropWhile : {A : Set}  (A  Bool)  List A  List A
dropWhile p = snd  span p

-- The accumulator is a sort of state passed along the computation

mapAccumL : {B C : Set}  {Acc : Set}  (Acc  B  Acc × C)  Acc  List B  Acc × List C
mapAccumL f ac [] =  ac , []
mapAccumL f ac (b  bs) with f ac b
... | ac' , c  =  second (_∷_ c) (mapAccumL f ac' bs)

open import Logic

Null : {A : Set}  List A  Set
Null = Sat null