{-# OPTIONS --type-in-type #-}

open import NeilPrelude

module StrictTotalOrder {A : Set} (_<_ : Rel A)

                                  (transit : Transitive _<_)
                                  (trich : Trichotomous _<_)

where

irreflex : Irreflexive _<_
irreflex = trichcases  _ _  id)  _ _  id) (\_ f _  f) trich

asym : Asymmetric _<_
asym ab ba = trichcases (\_ abf _  abf ab) (\_ _ baf  baf ba) (\_ abf _  abf ab) trich

import StrictPartialOrder
open StrictPartialOrder _<_ irreflex asym transit public

totality : Total _≤_
totality = trichcases  eq _ _  inlr eq)  _ lt _  inll lt)  _ _  inrl) trich

---------------------------------------------------------------

data OrdCompare : A  A  Set where
  refl : {a : A}            OrdCompare a a
  less : {a b : A}  a < b  OrdCompare a b
  more : {a b : A}  b < a  OrdCompare a b

data OrdCompareLeq (a b : A) : Set where
  leq  : a  b  OrdCompareLeq a b
  more : a > b  OrdCompareLeq a b

data OrdCompareGeq (a b : A) : Set where
  less : a < b  OrdCompareGeq a b
  geq  : a  b  OrdCompareGeq a b

---------------------------------------------------------------

compare : (a b : A)  OrdCompare a b
compare a b with trich {a} {b}
compare a .a | inl (refl , _)        = refl
compare a b  | inr (inl (_ , p , _)) = less p
compare a b  | inr (inr (_ , _ , p)) = more p

compareLeq : (a b : A)  OrdCompareLeq a b
compareLeq a b with compare a b
compareLeq a .a | refl   = leq (inr refl)
compareLeq a b  | less p = leq (inl p)
compareLeq a b  | more p = more p

compareGeq : (a b : A)  OrdCompareGeq a b
compareGeq a b with compare a b
compareGeq a .a | refl   = geq (inr refl)
compareGeq a b  | less p = less p
compareGeq a b  | more p = geq (inl p)

compareEq : (a b : A)  CompareEq a b
compareEq a b with compare a b
compareEq a .a | refl   = refl
compareEq a b  | less p = neq (lem-less→Neq p)
compareEq a b  | more p = neq (lem-more→Neq p)

simpleCompare : (a b : A)  SimpleCompare a b
simpleCompare a b with compare a b
simpleCompare a .a | refl   = refl
simpleCompare a b  | less p = neq
simpleCompare a b  | more p = neq

---------------------------------------------------------------

ifleq_≤_thenleq_elsemore_ : {X : Set}  (a b : A)  (a  b  X)  ((a > b)  X)  X
ifleq a  b thenleq xt elsemore xe with compareLeq a b
... | leq  p = xt p
... | more p = xe p

ifgeq_≥_thengeq_elseless_ : {X : Set}  (a b : A)  (a  b  X)  ((a < b)  X)  X
ifgeq a  b thengeq xt elseless xe with compareGeq a b
... | geq  p = xt p
... | less p = xe p

ifless_<_thenless_elsegeq_ : {X : Set}  (a b : A)  (a < b  X)  ((a  b)  X)  X
ifless a < b thenless xt elsegeq xe with compareGeq a b
... | less p = xt p
... | geq  p = xe p

ifmore_>_thenmore_elseleq_ : {X : Set}  (a b : A)  (a > b  X)  ((a  b)  X)  X
ifmore a > b thenmore xt elseleq xe with compareLeq a b
... | more p = xt p
... | leq  p = xe p

---------------------------------------------------------------

lem-LeqEqGeq : {b : A}  {P : A  Set}  ((a : A)  (a < b)  P a)  P b  ((a : A)  (a > b)  P a)  ((a : A)  P a)
lem-LeqEqGeq {b} p eq q a with compare a b
lem-LeqEqGeq p eq q a | refl    = eq
lem-LeqEqGeq p eq q a | less lt = p a lt
lem-LeqEqGeq p eq q a | more gt = q a gt

---------------------------------------------------------------

_<='_ : A  A  Bool
a <=' b with compareLeq a b
... | leq _  = true
... | more _ = false

_>='_ : A  A  Bool
a >=' b = b <=' a

open import Bool

_<'_ : A  A  Bool
a <' b = not (b <=' a)

_>'_ : A  A  Bool
a >' b = b <' a

---------------------------------------------------------------