
Tool Support for
Component-Based Semantics

Thomas van Binsbergen
Royal Holloway, University of London, UK

Peter Mosses, Neil Sculthorpe
Swansea University, UK

NWPT 2015, Reykjavík, Iceland, October 2015

1

programming
languages …

What is component-based semantics?

translation

fundamental
constructs

stable reusable components

evolving

…

open-ended repository

2

What are fundamental constructs?

Computation primitives and combinators

‣ sequential, if-then-else, while, bind, bound, scope,
allocate-initialised-variable, store-value, stored-value, …

Value constants, operations, and types

‣ booleans, is-less-or-equal, not, integers, integer-add, (),
environments, map-unite, variables, values, types, …

Values can be implicitly lifted to computations

‣ e.g.: while(not(stored-value(bound(“b”))), …)

3

CBS: component-based specification
– denotational-style translation

IMP-3.cbs

Language "IMP" Section 3 Statements and blocks

Syntax
 Stmt : stmt ::= block
 | id '=' aexp ';'
 | 'if' '(' bexp ')' block ('else' block)?
 | 'while' '(' bexp ')' block
 | stmt stmt
Syntax
 Block : block ::= '{' stmt? '}'

Rule
 [['if' '(' BExp ')' Block]] =
 [['if' '(' BExp ')' Block 'else' '{' '}']]

Semantics
 execute[[_:stmt]] : =>()
Rule
 execute[[I '=' AExp ';']] =

store-value(bound(id[[I]]), evaluate[[AExp]])
Rule
 execute[['if' '(' BExp ')' Block1 'else' Block2]] =

if-then-else(evaluate[[BExp]],
 execute[[Block1]],
 execute[[Block2]])

Rule
 execute[['while' '(' BExp ')' Block]] =

while(evaluate[[BExp]], execute[[Block]])
Rule
 execute[[Stmt1 Stmt2]] =

sequential(execute[[Stmt1]], execute[[Stmt2]])
Rule
 execute[['{' '}']] = ()
Rule
 execute[['{' Stmt '}']] = execute[[Stmt]]

Page 1

abstract syntax

IMP-3.cbs

Language "IMP" Section 3 Statements and blocks

Syntax
 Stmt : stmt ::= block
 | id '=' aexp ';'
 | 'if' '(' bexp ')' block ('else' block)?
 | 'while' '(' bexp ')' block
 | stmt stmt
Syntax
 Block : block ::= '{' stmt? '}'

Rule
 [['if' '(' BExp ')' Block]] =
 [['if' '(' BExp ')' Block 'else' '{' '}']]

Semantics
 execute[[_:stmt]] : =>()
Rule
 execute[[I '=' AExp ';']] =

store-value(bound(id[[I]]), evaluate[[AExp]])
Rule
 execute[['if' '(' BExp ')' Block1 'else' Block2]] =

if-then-else(evaluate[[BExp]],
 execute[[Block1]],
 execute[[Block2]])

Rule
 execute[['while' '(' BExp ')' Block]] =

while(evaluate[[BExp]], execute[[Block]])
Rule
 execute[[Stmt1 Stmt2]] =

sequential(execute[[Stmt1]], execute[[Stmt2]])
Rule
 execute[['{' '}']] = ()
Rule
 execute[['{' Stmt '}']] = execute[[Stmt]]

Page 1

translation equation
fundamental constructs

IMP-1.cbs

Language "IMP" Section 1 Arithmetic expressions

Syntax
 AExp : aexp ::= num
 | id
 | aexp '+' aexp
 | aexp '/' aexp
 | '(' aexp ')'

Semantics
 evaluate[[_:aexp]] : =>integers
Rule
 evaluate[[N]] = value[[N]]
Rule
 evaluate[[I]] = stored-value(bound(id[[I]]))
Rule
 evaluate[[AExp1 '+' AExp2]] =

integer-add(evaluate[[AExp1]], evaluate[[AExp2]])
Rule
 evaluate[[AExp1 '/' AExp2]] =

integer-divide(evaluate[[AExp1]], evaluate[[AExp2]])
Rule
 evaluate[['(' AExp ')']] = evaluate[[AExp]]

Syntax
 N : num ::= '-'? decimal
Lexis
 D : decimal ::= ('0'-'9')+
Semantics
 value[[_:num]] : integers
Rule
 value[[D]] = decimal-natural(\"D\")
Rule
 value[['-' D]] = integer-negate(value[[D]])

Lexis
 I : id ::= ('A'-'Z'|'a'-'z')+
Semantics
 id[[_:id]] : ids
Rule
 id[[I]] = \"I\"

Page 1

translation function

4

Fundamental construct specifications
– using CBS variant of modular SOS

a highly reusable component

environment(ρ′/ρ) ⊢ X → X′

environment(ρ) ⊢ scope(ρ′, X) → scope(ρ′, X′)

scope(ρ, V: values) → V

Funcon scope(_ : environments, _ : ⇒T) : ⇒T

Entity environment(ρ: environments) ⊢ _ → _

5

Tool support

6

Tool support for CBS: IDE

The Spoofax Language Workbench
Spoofax is a platform for developing textual domain-specific languages with full-
featured Eclipse editor plugins.

With the Spoofax language workbench, you can write the grammar of your
language using the high-level SDF grammar formalism. Based on this grammar,
basic editor services such as syntax highlighting and code folding are
automatically provided. Using high-level descriptor languages, these services can
be customized. More sophisticated services such as error marking and content
completion can be specified using rewrite rules in the Stratego language.

Meta Languages

Language definitions in Spoofax are constructed using the following meta-
languages:

The SDF3 syntax definition formalism
The NaBL name binding language
The TS type specification language
The Stratego transformation language

Spoofax Resources

Features
Tour
Download & Installation
Documentation
Frequently Asked Questions
Research

METABORG

menu

The Spoofax Language Workbench
Spoofax is a platform for developing textual domain-specific languages with full-
featured Eclipse editor plugins.

With the Spoofax language workbench, you can write the grammar of your
language using the high-level SDF grammar formalism. Based on this grammar,
basic editor services such as syntax highlighting and code folding are
automatically provided. Using high-level descriptor languages, these services can
be customized. More sophisticated services such as error marking and content
completion can be specified using rewrite rules in the Stratego language.

Meta Languages

Language definitions in Spoofax are constructed using the following meta-
languages:

The SDF3 syntax definition formalism
The NaBL name binding language
The TS type specification language
The Stratego transformation language

Spoofax Resources

Features
Tour
Download & Installation
Documentation
Frequently Asked Questions
Research

METABORG

menu

metaborg.org/spoofax

7

http://metaborg.org/spoofax/
http://metaborg.org/spoofax/

Current tool support:
CBS-based program execution

language → funconslanguage → funconslanguage → funcons

CBS CBS → StrategoCBS → StrategoCBS → Stratego

Stratego

language → funconslanguage → funconslanguage → funcons

Stratego

program

language

program

funcons

funcons

Haskell

8

Future tool support:
CBS-based interpreter generation

CBS → HaskellCBS → HaskellCBS → Haskell

Stratego

funcons

CBS

funcons

Haskell

9

Demo

‣ browsing/editing CBS specifications

‣ translating programs to funcons

‣ executing funcons

‣ generating translators

10

Conclusion

Current version of CBS tools available for download

‣ www.plancomps.org/nwpt2015-tsc

‣ tested with pre-packaged Spoofax/Eclipse distribution

CBS scales up to larger languages

‣ CAML LIGHT [Modularity’14 special issue,Trans. AOSD, 2015]

‣ C# [work in progress]

Fundamental constructs (funcons) appear to be

highly reusable components

11

http://www.plancomps.org/nwpt2015-tsc
http://www.plancomps.org/nwpt2015-tsc
http://metaborg.org/download/
http://metaborg.org/download/

