Temporal-Logic Combinators

Neil Sculthorpe

Functional Programming Laboratory School of Computer Science University of Nottingham United Kingdom nas@cs.nott.ac.uk

Functional Programming Laboratory Away Day Buxton, England 8th July 2011

< D > < P >

→ ∃ >

What is Temporal Logic?

- A modal logic where propositions are quantified over time.
- Also known as tense logic.
- Useful for reasoning about time-varying values.

イロト イポト イヨト イヨト

What is Time?

- A temporal logic has an underlying time domain.
- The nature of the time domain can vary. E.g.
 - Continuous or Discrete
 - Linear, Cyclic or Branching
 - Finite or Infinite
- But we assume it is a pre-order.

イロト イポト イヨト イヨト

・ロン ・回 と ・ ヨ と ・ ヨ と

Temporal Predicates

 $\textit{TPred} = \textit{Time} \rightarrow \textit{Set}$

・ロト ・回 ト ・ヨト ・ヨト

Introduction	Operators	Example Properties	Summary
Agda Encoding			

Temporal Predicates

 $TPred = Time \rightarrow Set$

The standard temporal-logic combinators can then be encoded directly in Agda.

<ロ> <同> <同> <同> < 三>

э

- ∢ ≣ ▶

Logical Operators

Lifted Operators

$$\begin{array}{l} -\wedge _: \ TPred \to TPred \to TPred \\ (\varphi \land \psi) \ t \ = \ \varphi \ t \times \psi \ t \\ \hline \ -\vee _: \ TPred \to TPred \to TPred \\ (\varphi \lor \psi) \ t \ = \ \varphi \ t \uplus \psi \ t \\ \hline \ -\Rightarrow _: \ TPred \to TPred \to TPred \\ (\varphi \Rightarrow \psi) \ t \ = \ \varphi \ t \to \psi \ t \\ \hline \ \bot \ : \ TPred \\ \hline \ \bot \ t \ = \ False \\ \hline \ \ T \ : \ TPred \\ \hline \ \ t \ = \ True \end{array}$$

・ロ・ ・ 日・ ・ 田・ ・ 田・

Introduction	Operators	Example Properties	Summary
Logical Opera	itors		

Defining Negation

$$\neg : \mathbf{TPred} \to \mathbf{TPred} \\ \neg \varphi = \varphi \Rightarrow \bot$$

・ロト ・回 ト ・ヨト ・ヨト

Introduction	Operators	Example Properties	Summary
Priorean Ope	rators		

First devised by Arthur Prior [Pri67].

・ロト ・回ト ・ヨト ・ヨト

Introduction	Operators	Example Properties	Summary
Priorean O	perators		

First devised by Arthur Prior [Pri67].

イロン イ部ン イヨン イヨン 三日

First devised by Arthur Prior [Pri67].

History

```
'At all points in the past'
```

$$\begin{array}{l} \textbf{H} : \textit{TPred} \rightarrow \textit{TPred} \\ \textbf{H} \varphi t = (t' : \textit{Time}) \rightarrow (t' < t) \rightarrow \varphi t' \end{array}$$

→ ∃ >

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Priorean Operators

Future

''At some point in the future''

$$\begin{array}{l} \mathbf{F} : \ TPred \rightarrow TPred \\ \mathbf{F} \ \varphi \ t \ = \ \Sigma \ [t' : \ Time] \ ((t' > t) \times \varphi \ t') \end{array}$$

Past

''At some point in the past''

 $\begin{array}{l} \mathbf{P} : \textit{TPred} \rightarrow \textit{TPred} \\ \mathbf{P} \ \varphi \ t \ = \ \Sigma \ [t' : \textit{Time}] \ ((t' < t) \times \varphi \ t') \end{array}$

syntax $\Sigma A (\lambda a \rightarrow B) = \Sigma [a : A] B$

Reflexive Priorean Operators

$$\begin{array}{l} \mathbf{G}^{\mathbf{r}} : \ TPred \rightarrow TPred \\ \mathbf{G}^{\mathbf{r}} \varphi = \varphi \wedge \mathbf{G} \varphi \end{array}$$

$$\begin{array}{l} \mathbf{H}^{\mathbf{r}} : \ TPred \rightarrow TPred \\ \mathbf{H}^{\mathbf{r}} \varphi = \varphi \wedge \mathbf{H} \varphi \end{array}$$

$$\begin{array}{l} \mathbf{F}^{\mathbf{r}} : \ TPred \rightarrow TPred \\ \mathbf{F}^{\mathbf{r}} \varphi = \varphi \vee \mathbf{F} \varphi \end{array}$$

$$\begin{array}{l} \mathbf{P}^{\mathbf{r}} : \ TPred \rightarrow TPred \\ \mathbf{P}^{\mathbf{r}} \varphi = \varphi \vee \mathbf{P} \varphi \end{array}$$

イロン イヨン イヨン イヨン

э

Since/Until Operators

There are also more expressive binary operators, such as Since and Until [Bur82].

Since

$$\label{eq:s_spectrum} \begin{array}{l} _\mathbf{S}_: \mbox{ TPred} \rightarrow \mbox{ TPred} \\ \varphi \ \mathbf{S} \ \psi \approx \varphi \ \mbox{has held since } \psi \ \mbox{held} \end{array}$$

Until

 $\begin{array}{l} _\mathbf{U}_{-}: \mbox{ TPred} \rightarrow \mbox{ TPred} \\ \varphi \ \mathbf{U} \ \psi \approx \varphi \ \mbox{will hold until } \psi \ \mbox{holds} \end{array}$

ヘロン 人間 とくほど くほどう

Properties of Time

It is possible to state temporal formulae that hold if and only if the underlying time domain has a specific property [Ven01].

Time-Domain Properties

FirstPoint : TPred FirstPoint = $\mathbf{P}^{r} (\mathbf{H} \perp)$

EndPoint : TPred EndPoint = $\mathbf{F}^{r} (\mathbf{G} \perp)$

・ロト ・同ト ・ヨト ・ヨト

Properties of Time

It is possible to state temporal formulae that hold if and only if the underlying time domain has a specific property [Ven01].

Time-Domain Properties

```
FirstPoint : TPred
FirstPoint = P^r(H \perp)
```

```
\begin{array}{l} \textit{EndPoint} : \textit{TPred} \\ \textit{EndPoint} = \textit{F}^{r} (\textit{G} \bot) \end{array}
```

・ロト ・同ト ・ヨト ・ヨト

- FRP is based around time-varying values called signals:
 - Signal $A = Time \rightarrow A$

イロン イ部ン イヨン イヨン 三日

• FRP is based around time-varying values called signals:

Signal $A = Time \rightarrow A$

- Typically, an FRP time domain:
 - is linear;
 - has a start point;
 - does not have an end point;
 - may be either continuous or discrete.

・ロト ・回ト ・ヨト ・ヨト

Time-Varying Equality

$$_\doteq_:$$
 Signal $A \rightarrow$ Signal $A \rightarrow$ TPred
($s_1 \doteq s_2$) $t = s_1 t \equiv s_2 t$

・ロン ・回 と ・ヨン ・ヨン

э

Time-Varying Equality

$$_\doteq_:$$
 Signal $A \rightarrow$ Signal $A \rightarrow$ TPred
($s_1 \doteq s_2$) $t = s_1 t \equiv s_2 t$

Causality

イロン 不同と 不同と 不同と

э

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Functional Reactive Programming (FRP)

Time-Varying Equality

$$_\doteq_:$$
 Signal $A \rightarrow$ Signal $A \rightarrow$ TPred
($s_1 \doteq s_2$) $t = s_1 t \equiv s_2 t$

Causality

$$\begin{array}{l} \textit{Causal} : (\textit{Signal } A \rightarrow \textit{Signal } B) \rightarrow \textit{Set} \\ \textit{Causal } f = \forall (s_1 \ s_2) \rightarrow \textit{Always} (\textsf{H}^r (s_1 \ \doteq \ s_2) \Rightarrow f \ s_1 \ \doteq \ f \ s_2) \end{array}$$

 $\textit{Causal } f \ = \ \forall \ (s_1 \ s_2 \ t) \rightarrow (\forall \ t' \rightarrow t' \leqslant t \rightarrow s_1 \ t' \equiv s_2 \ t') \rightarrow f \ s_1 \ t \equiv f \ s_2 \ t$

Time-Varying Equality

$$_\doteq_:$$
 Signal $A \rightarrow$ Signal $A \rightarrow$ TPred
($s_1 \doteq s_2$) $t = s_1 t \equiv s_2 t$

Causality

$$\begin{array}{l} \textit{Causal} : (\textit{Signal } A \rightarrow \textit{Signal } B) \rightarrow \textit{Set} \\ \textit{Causal } f = \forall (s_1 \ s_2) \rightarrow \textit{Always} (\textsf{H}^r (s_1 \ \doteq \ s_2) \Rightarrow f \ s_1 \ \doteq \ f \ s_2) \end{array}$$

 $\textit{Causal } f \ = \ \forall \ (s_1 \ s_2 \ t) \rightarrow (\forall \ t' \rightarrow t' \leqslant t \rightarrow s_1 \ t' \equiv s_2 \ t') \rightarrow f \ s_1 \ t \equiv f \ s_2 \ t$

Decoupledness

Summary

- Temporal-logic combinators are a useful notation for expressing and reasoning about time-varying properties.
- They (often) allow definitions to be stated intuitively and concisely.
- See my thesis for more FRP-based examples [Scu11].

(4月) イヨト イヨト

Introduction	Operators	Example Properties	Summary
Refere	nces		
	John P. Burgess. Axioms for tense logic. I. "Since Notre Dame Journal of Formal	" and "Until". Logic, 23(4):367–374, 1982	
	Arthur N. Prior. <i>Past, Present and Future.</i> Oxford University Press, 1967.		
	Neil Sculthorpe. <i>Towards Safe and Efficient Func</i> PhD thesis, School of Computer Nottingham, 2011.	tional Reactive Programmi Science, University of	ng.
	Yde Venema. Temporal logic.		

In *The Blackwell Guide to Philosophical Logic*, chapter 10, pages 203–223. Blackwell, 2001.