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ausal: 
urrent outputdoes not depend upon future input.We identify some subsets of the 
ausal signal fun
tions:Stateless signals fun
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urrent output only depends upon
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tions: 
urrent output 
an depend upon pastand 
urrent input (e.g. integration).De
oupled signal fun
tions: 
urrent output only depends uponpast inputs (e.g. time delay).We 
ompose signal fun
tions to form signal fun
tion networks.Example: Composing Signal Fun
tions
√

∫
delay 3Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySyn
hronous Data-Flow NetworksExample: A Signal Fun
tion Network
sf2

sf3

sf4

sf5
sf1

switch

Similar to the syn
hronous data-�ow languages. (Esterel,Lustre, Lu
id Syn
hrone et
...)FRP di�ers in that it allows dynami
 higher-order systemstru
tures, but la
ks some of their safety guarantees.Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySyn
hronous Data-Flow NetworksExample: A Signal Fun
tion Network
sf2

sf4

sf5
sf1

Similar to the syn
hronous data-�ow languages. (Esterel,Lustre, Lu
id Syn
hrone et
...)FRP di�ers in that it allows dynami
 higher-order systemstru
tures, but la
ks some of their safety guarantees.Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both 
ontinuous-time anddis
rete-time signals.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both 
ontinuous-time anddis
rete-time signals.We 
all dis
rete-time signals event signals.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both 
ontinuous-time anddis
rete-time signals.We 
all dis
rete-time signals event signals.Event signals are usually (in FRP) embedded in
ontinuous-time signals using an option type.Event A = Signal (Maybe A)

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both 
ontinuous-time anddis
rete-time signals.We 
all dis
rete-time signals event signals.Event signals are usually (in FRP) embedded in
ontinuous-time signals using an option type.Event A = Signal (Maybe A)However, this is insu�
iently abstra
t to be able to exploittheir dis
rete properties, and 
an lead to 
on
eptual errors onbehalf of the programmer.
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both 
ontinuous-time anddis
rete-time signals.We 
all dis
rete-time signals event signals.Event signals are usually (in FRP) embedded in
ontinuous-time signals using an option type.Event A = Signal (Maybe A)However, this is insu�
iently abstra
t to be able to exploittheir dis
rete properties, and 
an lead to 
on
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tors: 
on
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tors of signals that allows us to pre
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pure
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ause a program to diverge.Feedba
k loops are well de�ned if somewhere in the 
y
le theyare broken by a de
oupled signal fun
tion.Reminder: a signal fun
tion is de
oupled if its 
urrent outputonly depends upon its past inputs.Methods of de
oupling: time delays, 
onstants, someprimitives (e.g. integration using the re
tangle rule). . .Examples: Loops
Decoupled Loop

dup

delay 5

+

Instantaneous Loop

dup

+1

+Neil S
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hronous data-�ow languages make a trade-o�between expressiveness and safety.Dependent types allow us to have FRP with safety guarantees,while retaining dynami
 higher-order data-�ow.One su
h safety guarantee is the absen
e of instantaneousfeedba
k loops.Another is that all signals (that require it) are 
orre
tlyinitialised.See our paper for further details:http://www.
s.nott.a
.uk/∼nas/i
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