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Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: MP3 players, robot ontrollers, video games,aeroplane ontrol systems. . .Contrast with transformational programs, whih take all inputat the start of exeution and produe all output at the end(e.g. a ompiler).
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≫ : SF as bs → SF bs s → SF as s
∗∗∗ : SF as s → SF bs ds → SF (as++ bs) (s++ ds)loop : SF (as++ s) (bs++ ds) → SF ds s → SF as bsGraphial Representations
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Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are well de�ned if somewhere in the yle theyare broken by a deoupled signal funtion.Reminder: a signal funtion is deoupled if its urrent outputonly depends upon its past inputs.Methods of deoupling: time delays, onstants, someprimitives (e.g. integration using the retangle rule). . .Examples: Loops
Decoupled Loop

dup

delay 5

+

Instantaneous Loop

dup
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∗∗∗ : SF as s d1 → SF bs ds d2 → SF (as++ bs) (s++ ds) (d1 ∧ d2)loop : SF (as++ s) (bs++ ds) d → SF ds s true → SF as bs dExamples: Primitive Signal Funtions Indexed by Deouplednessnow : SF [ ] [E Unit] truetime : SF [ ] [C Time] trueedge : SF [C Bool] [E Unit] false

∫
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Primitives updated with Initialisation Desriptorspure : (a → b) → SF [C i a] [C i b] falsepre : SF [C init a] [C unin a] trueinitialise : a → SF [C unin a] [C init a] falseiPre : a → SF [C init a] [C init a] true
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