
Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySafe Funtional Reative Programmingthrough Dependent TypesNeil Sulthorpe and Henrik NilssonShool of Computer SieneUniversity of NottinghamUnited Kingdom{nas,nhn}�s.nott.a.ukTypes '09Aussois, Frane12th May 2009Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: MP3 players, robot ontrollers, video games,aeroplane ontrol systems. . .

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: MP3 players, robot ontrollers, video games,aeroplane ontrol systems. . .Contrast with transformational programs, whih take all inputat the start of exeution and produe all output at the end(e.g. a ompiler).

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryMotivationExisting reative programming languages make a trade-o�between stati safety guarantees and expressiveness.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryMotivationExisting reative programming languages make a trade-o�between stati safety guarantees and expressiveness.Most emphasise safety properties (suh as the absene ofdeadlok and run-time errors), whih are often ruial inreative domains.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryMotivationExisting reative programming languages make a trade-o�between stati safety guarantees and expressiveness.Most emphasise safety properties (suh as the absene ofdeadlok and run-time errors), whih are often ruial inreative domains.Funtional Reative Programming (FRP) di�ers in that it isvery expressive, but laking in these guarantees.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryMotivationExisting reative programming languages make a trade-o�between stati safety guarantees and expressiveness.Most emphasise safety properties (suh as the absene ofdeadlok and run-time errors), whih are often ruial inreative domains.Funtional Reative Programming (FRP) di�ers in that it isvery expressive, but laking in these guarantees.This work is about using dependent types to get some of thesesafety guarantees within FRP (without sari�ingexpressiveness).Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryOutline1 Motivation2 Outline3 Dependent Types in FRP4 Funtional Reative Programming (FRP)5 New Type System6 Safe Feedbak Loops7 Uninitialised Signals8 SummaryNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryDependent Types in FRP
A domain-spei� dependent type system for FRP thatenfores safety properties.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryDependent Types in FRP
A domain-spei� dependent type system for FRP thatenfores safety properties.An implementation, using this type system, in Agda.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryDependent Types in FRP
A domain-spei� dependent type system for FRP thatenfores safety properties.An implementation, using this type system, in Agda.Currently just a proof of onept implementation.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryDependent Types in FRP
A domain-spei� dependent type system for FRP thatenfores safety properties.An implementation, using this type system, in Agda.Currently just a proof of onept implementation.The implementation serves as a proof of the soundness of thetype system. (Agda heks totality and termination.)

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → A
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.Signal funtions are (oneptually) funtions mapping signalsto signals.SF A B ≈ Signal A → Signal B
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.Signal funtions are (oneptually) funtions mapping signalsto signals.SF A B ≈ Signal A → Signal BExample: Robot ControllerRobotController = SF Sensor ControlValueNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).Stateful signal funtions: urrent output an depend upon pastand urrent input (e.g. integration).
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).Stateful signal funtions: urrent output an depend upon pastand urrent input (e.g. integration).Deoupled signal funtions: urrent output only depends uponpast inputs (e.g. time delay).
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).Stateful signal funtions: urrent output an depend upon pastand urrent input (e.g. integration).Deoupled signal funtions: urrent output only depends uponpast inputs (e.g. time delay).We ompose signal funtions to form signal funtion networks.Example: Composing Signal Funtions
√

∫
delay 3Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySynhronous Data-Flow NetworksExample: A Signal Funtion Network
sf2

sf3

sf4

sf5
sf1

switch

Similar to the synhronous data-�ow languages. (Esterel,Lustre, Luid Synhrone et...)FRP di�ers in that it allows dynami higher-order systemstrutures, but laks some of their safety guarantees.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySynhronous Data-Flow NetworksExample: A Signal Funtion Network
sf2

sf4

sf5
sf1

Similar to the synhronous data-�ow languages. (Esterel,Lustre, Luid Synhrone et...)FRP di�ers in that it allows dynami higher-order systemstrutures, but laks some of their safety guarantees.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both ontinuous-time anddisrete-time signals.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both ontinuous-time anddisrete-time signals.We all disrete-time signals event signals.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both ontinuous-time anddisrete-time signals.We all disrete-time signals event signals.Event signals are usually (in FRP) embedded inontinuous-time signals using an option type.Event A = Signal (Maybe A)

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both ontinuous-time anddisrete-time signals.We all disrete-time signals event signals.Event signals are usually (in FRP) embedded inontinuous-time signals using an option type.Event A = Signal (Maybe A)However, this is insu�iently abstrat to be able to exploittheir disrete properties, and an lead to oneptual errors onbehalf of the programmer.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both ontinuous-time anddisrete-time signals.We all disrete-time signals event signals.Event signals are usually (in FRP) embedded inontinuous-time signals using an option type.Event A = Signal (Maybe A)However, this is insu�iently abstrat to be able to exploittheir disrete properties, and an lead to oneptual errors onbehalf of the programmer.To address this, we introdue signal vetors: oneptuallyheterogeneous vetors of signals that allows us to preiselyidentify signals (and their time domains) in the types.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal DesriptorsDesriptor De�nitionsdata SigDes : Set whereE : Set → SigDesC : Set → SigDesSVDes : SetSVDes = List SigDesExample: A Signal Vetor DesriptorsvdExample : SVDessvdExample = (C R :: E Bool :: C Z :: [])Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal FuntionsOriginal SF TypeSF : Set → Set → SetRevised SF TypeSF : SVDes → SVDes → Set
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySignal FuntionsOriginal SF TypeSF : Set → Set → SetRevised SF TypeSF : SVDes → SVDes → SetExample: Some Primitive Signal Funtionsnow : SF [] [E Unit]time : SF [] [C Time]edge : SF [C Bool] [E Unit]
∫

: SF [C R] [C R]Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryConstruting Signal FuntionsPrimitive Combinatorspure : (a → b) → SF [C a] [C b]

≫ : SF as bs → SF bs s → SF as s
∗∗∗ : SF as s → SF bs ds → SF (as++ bs) (s++ ds)loop : SF (as++ s) (bs++ ds) → SF ds s → SF as bsGraphial Representations

pure

f

>>>

sf2sf1

∗∗∗

sf1

sf2

loop

sf1

sf2Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryConstruting Signal FuntionsExample: The after Signal FuntionThe signal funtion after t produes an event at time t.after : Time → SF [] [E Unit]after t = time ≫ pure (6 t) ≫ edge
≥t edgetime

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak Loops

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are well de�ned if somewhere in the yle theyare broken by a deoupled signal funtion.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are well de�ned if somewhere in the yle theyare broken by a deoupled signal funtion.Reminder: a signal funtion is deoupled if its urrent outputonly depends upon its past inputs.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are well de�ned if somewhere in the yle theyare broken by a deoupled signal funtion.Reminder: a signal funtion is deoupled if its urrent outputonly depends upon its past inputs.Methods of deoupling: time delays, onstants, someprimitives (e.g. integration using the retangle rule). . .Examples: Loops
Decoupled Loop

dup

delay 5

+

Instantaneous Loop

dup

+1

+Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryExisting Approahes to DeouplingRelying on the programmer to orretly de�ne loops.Does not restrit expressiveness.Easy to introdue bugs into programs.Most FRP variants take this approah.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryExisting Approahes to DeouplingRelying on the programmer to orretly de�ne loops.Does not restrit expressiveness.Easy to introdue bugs into programs.Most FRP variants take this approah.Expliit use of a deoupling primitive in all reursive de�nitions.Can be on�rmed as safe by the type heker (onservatively).Limits expressiveness (annot use dynami or higher ordersignal funtions for deoupling).Most synhronous data-�ow languages take this approah.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryOur Approah: Deoupledness in the TypesWe index signal funtion types with a boolean to denote theirdeoupledness.Primitive Combinators Indexed by Deouplednesspure : (a → b) → SF [C a] [C b] false
≫ : SF as bs d1 → SF bs s d2 → SF as s (d1 ∨ d2)
∗∗∗ : SF as s d1 → SF bs ds d2 → SF (as++ bs) (s++ ds) (d1 ∧ d2)loop : SF (as++ s) (bs++ ds) d → SF ds s true → SF as bs d

loop

sf1

sf2Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryOur Approah: Deoupledness in the TypesWe index signal funtion types with a boolean to denote theirdeoupledness.Primitive Combinators Indexed by Deouplednesspure : (a → b) → SF [C a] [C b] false
≫ : SF as bs d1 → SF bs s d2 → SF as s (d1 ∨ d2)
∗∗∗ : SF as s d1 → SF bs ds d2 → SF (as++ bs) (s++ ds) (d1 ∧ d2)loop : SF (as++ s) (bs++ ds) d → SF ds s true → SF as bs dExamples: Primitive Signal Funtions Indexed by Deouplednessnow : SF [] [E Unit] truetime : SF [] [C Time] trueedge : SF [C Bool] [E Unit] false

∫
: SF [C R] [C R] ?Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryUninitialised Signals

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryUninitialised Signals
The deoupled signal funtion pre introdues an in�nitesimaltime delay in a ontinuous-time signal.But this also means the signal is initially unde�ned.Initialisation Primitivespre : SF [C a] [C a] trueinitialise : a → SF [C a] [C a] falseiPre : a → SF [C a] [C a] true

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryUninitialised SignalsBoolean SynonymsInit = Boolinit = trueunin = falseAdding Initialisation to Signal Desriptorsdata SigDes : Set whereE : Set → SigDesC : Init → Set → SigDesNote that event signals are only de�ned at disrete points in time,so there is no need to initialise them.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummaryUninitialised Signals
Primitives updated with Initialisation Desriptorspure : (a → b) → SF [C i a] [C i b] falsepre : SF [C init a] [C unin a] trueinitialise : a → SF [C unin a] [C init a] falseiPre : a → SF [C init a] [C init a] true

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedbak Loops Initialisation SummarySummaryFRP and synhronous data-�ow languages make a trade-o�between expressiveness and safety.Dependent types allow us to have FRP with safety guarantees,while retaining dynami higher-order data-�ow.One suh safety guarantee is the absene of instantaneousfeedbak loops.Another is that all signals (that require it) are orretlyinitialised.See our paper for further details:http://www.s.nott.a.uk/∼nas/ifp09.pdfNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

	Motivation
	Outline
	Dependent Types in FRP
	Functional Reactive Programming (FRP)
	New Type System
	Safe Feedback Loops
	Uninitialised Signals
	Summary

