
Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySafe Fun
tional Rea
tive Programmingthrough Dependent TypesNeil S
ulthorpe and Henrik NilssonS
hool of Computer S
ien
eUniversity of NottinghamUnited Kingdom{nas,nhn}�
s.nott.a
.ukTypes '09Aussois, Fran
e12th May 2009Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryRea
tive Programming
Rea
tive Program: one that
ontinually intera
ts with itsenvironment, interleaving input and output in a timely manner.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryRea
tive Programming
Rea
tive Program: one that
ontinually intera
ts with itsenvironment, interleaving input and output in a timely manner.Examples: MP3 players, robot
ontrollers, video games,aeroplane
ontrol systems. . .

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryRea
tive Programming
Rea
tive Program: one that
ontinually intera
ts with itsenvironment, interleaving input and output in a timely manner.Examples: MP3 players, robot
ontrollers, video games,aeroplane
ontrol systems. . .Contrast with transformational programs, whi
h take all inputat the start of exe
ution and produ
e all output at the end(e.g. a
ompiler).

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryMotivationExisting rea
tive programming languages make a trade-o�between stati
 safety guarantees and expressiveness.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryMotivationExisting rea
tive programming languages make a trade-o�between stati
 safety guarantees and expressiveness.Most emphasise safety properties (su
h as the absen
e ofdeadlo
k and run-time errors), whi
h are often
ru
ial inrea
tive domains.
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryMotivationExisting rea
tive programming languages make a trade-o�between stati
 safety guarantees and expressiveness.Most emphasise safety properties (su
h as the absen
e ofdeadlo
k and run-time errors), whi
h are often
ru
ial inrea
tive domains.Fun
tional Rea
tive Programming (FRP) di�ers in that it isvery expressive, but la
king in these guarantees.
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryMotivationExisting rea
tive programming languages make a trade-o�between stati
 safety guarantees and expressiveness.Most emphasise safety properties (su
h as the absen
e ofdeadlo
k and run-time errors), whi
h are often
ru
ial inrea
tive domains.Fun
tional Rea
tive Programming (FRP) di�ers in that it isvery expressive, but la
king in these guarantees.This work is about using dependent types to get some of thesesafety guarantees within FRP (without sa
ri�
ingexpressiveness).Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryOutline1 Motivation2 Outline3 Dependent Types in FRP4 Fun
tional Rea
tive Programming (FRP)5 New Type System6 Safe Feedba
k Loops7 Uninitialised Signals8 SummaryNeil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryDependent Types in FRP
A domain-spe
i�
 dependent type system for FRP thatenfor
es safety properties.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryDependent Types in FRP
A domain-spe
i�
 dependent type system for FRP thatenfor
es safety properties.An implementation, using this type system, in Agda.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryDependent Types in FRP
A domain-spe
i�
 dependent type system for FRP thatenfor
es safety properties.An implementation, using this type system, in Agda.Currently just a proof of
on
ept implementation.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryDependent Types in FRP
A domain-spe
i�
 dependent type system for FRP thatenfor
es safety properties.An implementation, using this type system, in Agda.Currently just a proof of
on
ept implementation.The implementation serves as a proof of the soundness of thetype system. (Agda
he
ks totality and termination.)

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryFun
tional Rea
tive ProgrammingA fun
tional approa
h to rea
tive programming.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryFun
tional Rea
tive ProgrammingA fun
tional approa
h to rea
tive programming.Usually a domain spe
i�
 embedding inside an existingfun
tional language (e.g. Haskell).

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryFun
tional Rea
tive ProgrammingA fun
tional approa
h to rea
tive programming.Usually a domain spe
i�
 embedding inside an existingfun
tional language (e.g. Haskell).Fundamental
on
ept: time varying values
alled signals.Signal A ≈ Time → A
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryFun
tional Rea
tive ProgrammingA fun
tional approa
h to rea
tive programming.Usually a domain spe
i�
 embedding inside an existingfun
tional language (e.g. Haskell).Fundamental
on
ept: time varying values
alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal fun
tionsas the basi
 building blo
ks of our language.
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryFun
tional Rea
tive ProgrammingA fun
tional approa
h to rea
tive programming.Usually a domain spe
i�
 embedding inside an existingfun
tional language (e.g. Haskell).Fundamental
on
ept: time varying values
alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal fun
tionsas the basi
 building blo
ks of our language.Signal fun
tions are (
on
eptually) fun
tions mapping signalsto signals.SF A B ≈ Signal A → Signal B
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryFun
tional Rea
tive ProgrammingA fun
tional approa
h to rea
tive programming.Usually a domain spe
i�
 embedding inside an existingfun
tional language (e.g. Haskell).Fundamental
on
ept: time varying values
alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal fun
tionsas the basi
 building blo
ks of our language.Signal fun
tions are (
on
eptually) fun
tions mapping signalsto signals.SF A B ≈ Signal A → Signal BExample: Robot ControllerRobotController = SF Sensor ControlValueNeil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Fun
tions Chara
teristi
sAll signal fun
tions are (temporally)
ausal:
urrent outputdoes not depend upon future input.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Fun
tions Chara
teristi
sAll signal fun
tions are (temporally)
ausal:
urrent outputdoes not depend upon future input.We identify some subsets of the
ausal signal fun
tions:

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Fun
tions Chara
teristi
sAll signal fun
tions are (temporally)
ausal:
urrent outputdoes not depend upon future input.We identify some subsets of the
ausal signal fun
tions:Stateless signals fun
tions:
urrent output only depends upon
urrent input (e.g. square root).
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Fun
tions Chara
teristi
sAll signal fun
tions are (temporally)
ausal:
urrent outputdoes not depend upon future input.We identify some subsets of the
ausal signal fun
tions:Stateless signals fun
tions:
urrent output only depends upon
urrent input (e.g. square root).Stateful signal fun
tions:
urrent output
an depend upon pastand
urrent input (e.g. integration).
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Fun
tions Chara
teristi
sAll signal fun
tions are (temporally)
ausal:
urrent outputdoes not depend upon future input.We identify some subsets of the
ausal signal fun
tions:Stateless signals fun
tions:
urrent output only depends upon
urrent input (e.g. square root).Stateful signal fun
tions:
urrent output
an depend upon pastand
urrent input (e.g. integration).De
oupled signal fun
tions:
urrent output only depends uponpast inputs (e.g. time delay).
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Fun
tions Chara
teristi
sAll signal fun
tions are (temporally)
ausal:
urrent outputdoes not depend upon future input.We identify some subsets of the
ausal signal fun
tions:Stateless signals fun
tions:
urrent output only depends upon
urrent input (e.g. square root).Stateful signal fun
tions:
urrent output
an depend upon pastand
urrent input (e.g. integration).De
oupled signal fun
tions:
urrent output only depends uponpast inputs (e.g. time delay).We
ompose signal fun
tions to form signal fun
tion networks.Example: Composing Signal Fun
tions
√

∫
delay 3Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySyn
hronous Data-Flow NetworksExample: A Signal Fun
tion Network
sf2

sf3

sf4

sf5
sf1

switch

Similar to the syn
hronous data-�ow languages. (Esterel,Lustre, Lu
id Syn
hrone et
...)FRP di�ers in that it allows dynami
 higher-order systemstru
tures, but la
ks some of their safety guarantees.Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySyn
hronous Data-Flow NetworksExample: A Signal Fun
tion Network
sf2

sf4

sf5
sf1

Similar to the syn
hronous data-�ow languages. (Esterel,Lustre, Lu
id Syn
hrone et
...)FRP di�ers in that it allows dynami
 higher-order systemstru
tures, but la
ks some of their safety guarantees.Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both
ontinuous-time anddis
rete-time signals.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both
ontinuous-time anddis
rete-time signals.We
all dis
rete-time signals event signals.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both
ontinuous-time anddis
rete-time signals.We
all dis
rete-time signals event signals.Event signals are usually (in FRP) embedded in
ontinuous-time signals using an option type.Event A = Signal (Maybe A)

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both
ontinuous-time anddis
rete-time signals.We
all dis
rete-time signals event signals.Event signals are usually (in FRP) embedded in
ontinuous-time signals using an option type.Event A = Signal (Maybe A)However, this is insu�
iently abstra
t to be able to exploittheir dis
rete properties, and
an lead to
on
eptual errors onbehalf of the programmer.
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: it has both
ontinuous-time anddis
rete-time signals.We
all dis
rete-time signals event signals.Event signals are usually (in FRP) embedded in
ontinuous-time signals using an option type.Event A = Signal (Maybe A)However, this is insu�
iently abstra
t to be able to exploittheir dis
rete properties, and
an lead to
on
eptual errors onbehalf of the programmer.To address this, we introdu
e signal ve
tors:
on
eptuallyheterogeneous ve
tors of signals that allows us to pre
iselyidentify signals (and their time domains) in the types.Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Des
riptorsDes
riptor De�nitionsdata SigDes
 : Set whereE : Set → SigDes
C : Set → SigDes
SVDes
 : SetSVDes
 = List SigDes
Example: A Signal Ve
tor Des
riptorsvdExample : SVDes
svdExample = (C R :: E Bool :: C Z :: [])Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Fun
tionsOriginal SF TypeSF : Set → Set → SetRevised SF TypeSF : SVDes
 → SVDes
 → Set
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySignal Fun
tionsOriginal SF TypeSF : Set → Set → SetRevised SF TypeSF : SVDes
 → SVDes
 → SetExample: Some Primitive Signal Fun
tionsnow : SF [] [E Unit]time : SF [] [C Time]edge : SF [C Bool] [E Unit]
∫

: SF [C R] [C R]Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryConstru
ting Signal Fun
tionsPrimitive Combinatorspure : (a → b) → SF [C a] [C b]

≫ : SF as bs → SF bs
s → SF as
s
∗∗∗ : SF as
s → SF bs ds → SF (as++ bs) (
s++ ds)loop : SF (as++
s) (bs++ ds) → SF ds
s → SF as bsGraphi
al Representations

pure

f

>>>

sf2sf1

∗∗∗

sf1

sf2

loop

sf1

sf2Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryConstru
ting Signal Fun
tionsExample: The after Signal Fun
tionThe signal fun
tion after t produ
es an event at time t.after : Time → SF [] [E Unit]after t = time ≫ pure (6 t) ≫ edge
≥t edgetime

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryWell De�ned Feedba
k Loops

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryWell De�ned Feedba
k LoopsBadly de�ned feedba
k loops
an
ause a program to diverge.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryWell De�ned Feedba
k LoopsBadly de�ned feedba
k loops
an
ause a program to diverge.Feedba
k loops are well de�ned if somewhere in the
y
le theyare broken by a de
oupled signal fun
tion.

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryWell De�ned Feedba
k LoopsBadly de�ned feedba
k loops
an
ause a program to diverge.Feedba
k loops are well de�ned if somewhere in the
y
le theyare broken by a de
oupled signal fun
tion.Reminder: a signal fun
tion is de
oupled if its
urrent outputonly depends upon its past inputs.
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryWell De�ned Feedba
k LoopsBadly de�ned feedba
k loops
an
ause a program to diverge.Feedba
k loops are well de�ned if somewhere in the
y
le theyare broken by a de
oupled signal fun
tion.Reminder: a signal fun
tion is de
oupled if its
urrent outputonly depends upon its past inputs.Methods of de
oupling: time delays,
onstants, someprimitives (e.g. integration using the re
tangle rule). . .Examples: Loops
Decoupled Loop

dup

delay 5

+

Instantaneous Loop

dup

+1

+Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryExisting Approa
hes to De
ouplingRelying on the programmer to
orre
tly de�ne loops.Does not restri
t expressiveness.Easy to introdu
e bugs into programs.Most FRP variants take this approa
h.
Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryExisting Approa
hes to De
ouplingRelying on the programmer to
orre
tly de�ne loops.Does not restri
t expressiveness.Easy to introdu
e bugs into programs.Most FRP variants take this approa
h.Expli
it use of a de
oupling primitive in all re
ursive de�nitions.Can be
on�rmed as safe by the type
he
ker (
onservatively).Limits expressiveness (
annot use dynami
 or higher ordersignal fun
tions for de
oupling).Most syn
hronous data-�ow languages take this approa
h.Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryOur Approa
h: De
oupledness in the TypesWe index signal fun
tion types with a boolean to denote theirde
oupledness.Primitive Combinators Indexed by De
ouplednesspure : (a → b) → SF [C a] [C b] false
≫ : SF as bs d1 → SF bs
s d2 → SF as
s (d1 ∨ d2)
∗∗∗ : SF as
s d1 → SF bs ds d2 → SF (as++ bs) (
s++ ds) (d1 ∧ d2)loop : SF (as++
s) (bs++ ds) d → SF ds
s true → SF as bs d

loop

sf1

sf2Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryOur Approa
h: De
oupledness in the TypesWe index signal fun
tion types with a boolean to denote theirde
oupledness.Primitive Combinators Indexed by De
ouplednesspure : (a → b) → SF [C a] [C b] false
≫ : SF as bs d1 → SF bs
s d2 → SF as
s (d1 ∨ d2)
∗∗∗ : SF as
s d1 → SF bs ds d2 → SF (as++ bs) (
s++ ds) (d1 ∧ d2)loop : SF (as++
s) (bs++ ds) d → SF ds
s true → SF as bs dExamples: Primitive Signal Fun
tions Indexed by De
ouplednessnow : SF [] [E Unit] truetime : SF [] [C Time] trueedge : SF [C Bool] [E Unit] false

∫
: SF [C R] [C R] ?Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryUninitialised Signals

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryUninitialised Signals
The de
oupled signal fun
tion pre introdu
es an in�nitesimaltime delay in a
ontinuous-time signal.But this also means the signal is initially unde�ned.Initialisation Primitivespre : SF [C a] [C a] trueinitialise : a → SF [C a] [C a] falseiPre : a → SF [C a] [C a] true

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryUninitialised SignalsBoolean SynonymsInit = Boolinit = trueunin = falseAdding Initialisation to Signal Des
riptorsdata SigDes
 : Set whereE : Set → SigDes
C : Init → Set → SigDes
Note that event signals are only de�ned at dis
rete points in time,so there is no need to initialise them.Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummaryUninitialised Signals
Primitives updated with Initialisation Des
riptorspure : (a → b) → SF [C i a] [C i b] falsepre : SF [C init a] [C unin a] trueinitialise : a → SF [C unin a] [C init a] falseiPre : a → SF [C init a] [C init a] true

Neil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline Dependent Types FRP Type System Feedba
k Loops Initialisation SummarySummaryFRP and syn
hronous data-�ow languages make a trade-o�between expressiveness and safety.Dependent types allow us to have FRP with safety guarantees,while retaining dynami
 higher-order data-�ow.One su
h safety guarantee is the absen
e of instantaneousfeedba
k loops.Another is that all signals (that require it) are
orre
tlyinitialised.See our paper for further details:http://www.
s.nott.a
.uk/∼nas/i
fp09.pdfNeil S
ulthorpe and Henrik Nilsson Safe FRP through Dependent Types

	Motivation
	Outline
	Dependent Types in FRP
	Functional Reactive Programming (FRP)
	New Type System
	Safe Feedback Loops
	Uninitialised Signals
	Summary

