
Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySafe Funtional Reative Programmingthrough Dependent TypesNeil Sulthorpe and Henrik NilssonShool of Computer SieneUniversity of NottinghamUnited Kingdom{nas,nhn}�s.nott.a.ukThe 14th International Conferene on Funtional ProgrammingEdinburgh, Sotland31st August 2009Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: MP3 players, robot ontrollers, video games,aeroplane ontrol systems. . .

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: MP3 players, robot ontrollers, video games,aeroplane ontrol systems. . .Contrast with transformational programs, whih take all inputat the start of exeution and produe all output at the end(e.g. a ompiler).

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryMotivationExisting reative programming languages make a trade-o�:Stati safety guarantees vs Expressiveness

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryMotivationExisting reative programming languages make a trade-o�:Stati safety guarantees vs ExpressivenessMost emphasise safety guarantees:Absene of deadlok, absene of run-time errors, et...Often ruial in reative domains.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryMotivationExisting reative programming languages make a trade-o�:Stati safety guarantees vs ExpressivenessMost emphasise safety guarantees:Absene of deadlok, absene of run-time errors, et...Often ruial in reative domains.Funtional Reative Programming (FRP):Very expressive.Laks many safety guarantees.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryMotivationExisting reative programming languages make a trade-o�:Stati safety guarantees vs ExpressivenessMost emphasise safety guarantees:Absene of deadlok, absene of run-time errors, et...Often ruial in reative domains.Funtional Reative Programming (FRP):Very expressive.Laks many safety guarantees.This work: using dependent types to get safety guaranteeswithin FRP without sari�ing expressiveness.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryOutline1 Motivation2 Outline3 Dependent Types in FRP4 Funtional Reative Programming (FRP)5 New Type System6 Safe Feedbak Loops7 Safe Initialisation of Signals8 SummaryNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryDependent Types in FRPA domain-spei� dependent type system for FRP thatenfores safety properties.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryDependent Types in FRPA domain-spei� dependent type system for FRP thatenfores safety properties.A proof of the soundness of the type system, in the form of anAgda implementation.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryDependent Types in FRPA domain-spei� dependent type system for FRP thatenfores safety properties.A proof of the soundness of the type system, in the form of anAgda implementation.AgdaDependently typed language.Similarities with Haskell.Totality and termination heks.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryDependent Types in FRPA domain-spei� dependent type system for FRP thatenfores safety properties.A proof of the soundness of the type system, in the form of anAgda implementation.In development: a Haskell implementation (using GHClanguage extensions).AgdaDependently typed language.Similarities with Haskell.Totality and termination heks.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → A
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.Signal funtions are (oneptually) funtions mapping signalsto signals.SF A B ≈ Signal A → Signal B
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.Signal funtions are (oneptually) funtions mapping signalsto signals.SF A B ≈ Signal A → Signal BExample: Robot ControllerRobotController = SF Sensor ControlValueNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal FuntionsAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal FuntionsAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We build FRP programs by omposing signal funtions to formsignal funtion networks.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal FuntionsAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We build FRP programs by omposing signal funtions to formsignal funtion networks.Implementing Signal FuntionsIn pratise, FRP implementations run signal funtions over adisrete sequene of time samples (synhronously).This is hidden by the signal funtion abstration.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySynhronous Data-Flow NetworksExample: A Signal Funtion Network
switch

sf1
sf5

sf4

sf2

sf3

Similar to the synhronous data-�ow languages (Esterel,Lustre, Luid Synhrone et...).FRP di�ers in that it allows dynami higher-order systemstrutures, but laks some safety guarantees.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySynhronous Data-Flow NetworksExample: A Signal Funtion Network
sf1

sf5

sf4

sf2

Similar to the synhronous data-�ow languages (Esterel,Lustre, Luid Synhrone et...).FRP di�ers in that it allows dynami higher-order systemstrutures, but laks some safety guarantees.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: ontinuous-time and disrete-time signals.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: ontinuous-time and disrete-time signals.We all disrete-time signals event signals.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: ontinuous-time and disrete-time signals.We all disrete-time signals event signals.Event signals are usually embedded in ontinuous-time signalsusing an option type:Event A = Signal (Maybe A)

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryHybrid SignalsFRP is also hybrid: ontinuous-time and disrete-time signals.We all disrete-time signals event signals.Event signals are usually embedded in ontinuous-time signalsusing an option type:Event A = Signal (Maybe A)Problems:Insu�iently abstrat to exploit their disrete properties.Can lead to oneptual errors by the programmer.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal VetorsSignal Vetor: a heterogeneous vetor of signals with the timedomain expliit in the type.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal VetorsSignal Vetor: a heterogeneous vetor of signals with the timedomain expliit in the type.Signal Desriptor: a type and time domain (C or E).

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal VetorsSignal Vetor: a heterogeneous vetor of signals with the timedomain expliit in the type.Signal Desriptor: a type and time domain (C or E).Signal Vetor Desriptor: a list of signal desriptors.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal VetorsSignal Vetor: a heterogeneous vetor of signals with the timedomain expliit in the type.Signal Desriptor: a type and time domain (C or E).Signal Vetor Desriptor: a list of signal desriptors.Example: A Signal Vetor Desriptor
[C Bool,E (Tree Z),C R]

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal VetorsSignal Vetor: a heterogeneous vetor of signals with the timedomain expliit in the type.Signal Desriptor: a type and time domain (C or E).Signal Vetor Desriptor: a list of signal desriptors.Example: A Signal Vetor Desriptor
[C Bool,E (Tree Z),C R]Example: Some Primitive Signal Funtionsnow : SF [] [E Unit]time : SF [] [C Time]edge : SF [C Bool] [E Unit]
∫

: SF [C R] [C R]Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryConstruting Signal FuntionsPrimitive Combinatorspure : (a → b) → SF [C a] [C b]

≫ : SF as bs → SF bs s → SF as s
∗∗∗ : SF as s → SF bs ds → SF (as++ bs) (s++ ds)loop : SF (as++ s) (bs++ ds) → SF ds s → SF as bsGraphial Representations

sf1

∗∗∗

sf2

sf1

loop

sf2

pure

f

sf1

>>>

sf2Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryConstruting Signal FuntionsExample: The after Signal FuntionThe signal funtion after t produes an event at time t.after : Time → SF [] [E Unit]after t = time ≫ pure (> t) ≫ edge
edgetime ≥t

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak Loops

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are well de�ned if somewhere in the yle theyare broken by a deoupled signal funtion.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are well de�ned if somewhere in the yle theyare broken by a deoupled signal funtion.Deoupled signal funtion: urrent output only depends uponits past inputs.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are well de�ned if somewhere in the yle theyare broken by a deoupled signal funtion.Deoupled signal funtion: urrent output only depends uponits past inputs.Methods of deoupling: time delays, in�nitesimal delays, someprimitives (e.g. integration using the retangle rule). . .Examples: Loops
Decoupled Loop

+ dup

delay 5

Instantaneous Loop

+ dup

+1Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryExisting Approahes to DeouplingRelying on the programmer to orretly de�ne loops.Does not restrit expressiveness.Easy to introdue bugs into programs.Most FRP variants take this approah.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryExisting Approahes to DeouplingRelying on the programmer to orretly de�ne loops.Does not restrit expressiveness.Easy to introdue bugs into programs.Most FRP variants take this approah.Expliit use of a deoupling primitive in all reursive de�nitions.Can be on�rmed as safe by the type heker (onservatively).Limits expressiveness (in partiular, strutural dynamism andhigher-order signal funtions).Most synhronous data-�ow languages take this approah.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryOur Approah: Deoupledness in the TypesIndex signal funtions by booleans to denote deoupledness.Primitive Combinators Indexed by Deouplednesspure : (a → b) → SF [C a] [C b] false
≫ : SF as bs d1 → SF bs s d2 → SF as s (d1 ∨ d2)
∗∗∗ : SF as s d1 → SF bs ds d2 → SF (as++ bs) (s++ ds) (d1 ∧ d2)loop : SF (as++ s) (bs++ ds) d → SF ds s true → SF as bs d

sf1

loop

sf2Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryOur Approah: Deoupledness in the TypesIndex signal funtions by booleans to denote deoupledness.Primitive Combinators Indexed by Deouplednesspure : (a → b) → SF [C a] [C b] false
≫ : SF as bs d1 → SF bs s d2 → SF as s (d1 ∨ d2)
∗∗∗ : SF as s d1 → SF bs ds d2 → SF (as++ bs) (s++ ds) (d1 ∧ d2)loop : SF (as++ s) (bs++ ds) d → SF ds s true → SF as bs dExamples: Primitive Signal Funtions Indexed by Deouplednessnow : SF [] [E Unit] truetime : SF [] [C Time] trueedge : SF [C Bool] [E Unit] false

∫
: SF [C R] [C R] ?Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryUninitialised Signals

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryUninitialised SignalsThe Signal Funtion preConeptually an in�nitesimal time delay.Deoupled.Initial output is unde�ned.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryUninitialised SignalsThe Signal Funtion preConeptually an in�nitesimal time delay.Deoupled.Initial output is unde�ned.Initialisation Primitivespre : SF [C a] [C a] trueinitialise : a → SF [C a] [C a] falseiPre : a → SF [C a] [C a] trueNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryUninitialised SignalsPrimitives updated with Initialisation Desriptorspure : (a → b) → SF [C i a] [C i b] falsepre : SF [C init a] [C unin a] trueinitialise : a → SF [C unin a] [C init a] falseiPre : a → SF [C init a] [C init a] trueBoolean Synonymsinit = trueunin = falseEvent signals are only de�ned at disrete points in time, so there isno need to ensure initialisation.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySummary
FRP and synhronous data-�ow languages make a trade-o�between expressiveness and safety.Dependent types allow us to have FRP with safety guarantees,while retaining dynami higher-order data-�ow.Examples:Absene of instantaneous feedbak loops.Corret initialisation of signals.See the paper for further details.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

	Motivation
	Outline
	Dependent Types in FRP
	Functional Reactive Programming (FRP)
	New Type System
	Safe Feedback Loops
	Safe Initialisation of Signals
	Summary

