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Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: MP3 players, robot ontrollers, video games,aeroplane ontrol systems. . .Contrast with transformational programs, whih take all inputat the start of exeution and produe all output at the end(e.g. a ompiler).
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Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummarySignal FuntionsAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We build FRP programs by omposing signal funtions to formsignal funtion networks.Implementing Signal FuntionsIn pratise, FRP implementations run signal funtions over adisrete sequene of time samples (synhronously).This is hidden by the signal funtion abstration.
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[C Bool,E (Tree Z),C R]Example: Some Primitive Signal Funtionsnow : SF [ ] [E Unit]time : SF [ ] [C Time]edge : SF [C Bool] [E Unit]
∫
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≫ : SF as bs → SF bs s → SF as s
∗∗∗ : SF as s → SF bs ds → SF (as++ bs) (s++ ds)loop : SF (as++ s) (bs++ ds) → SF ds s → SF as bsGraphial Representations
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Motivation Outline DT in FRP FRP Type System Feedbak Loops Initialisation SummaryWell De�ned Feedbak LoopsBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are well de�ned if somewhere in the yle theyare broken by a deoupled signal funtion.Deoupled signal funtion: urrent output only depends uponits past inputs.Methods of deoupling: time delays, in�nitesimal delays, someprimitives (e.g. integration using the retangle rule). . .Examples: Loops
Decoupled Loop

+ dup

delay 5

Instantaneous Loop

+ dup

+1Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types
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∗∗∗ : SF as s d1 → SF bs ds d2 → SF (as++ bs) (s++ ds) (d1 ∧ d2)loop : SF (as++ s) (bs++ ds) d → SF ds s true → SF as bs dExamples: Primitive Signal Funtions Indexed by Deouplednessnow : SF [ ] [E Unit] truetime : SF [ ] [C Time] trueedge : SF [C Bool] [E Unit] false

∫
: SF [C R] [C R] ?Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types
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FRP and synhronous data-�ow languages make a trade-o�between expressiveness and safety.Dependent types allow us to have FRP with safety guarantees,while retaining dynami higher-order data-�ow.Examples:Absene of instantaneous feedbak loops.Corret initialisation of signals.See the paper for further details.
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