
Motivation Outline FRP DTP Feedbak Loops SummarySafe Funtional Reative Programming throughDependent TypesNeil Sulthorpe and Henrik NilssonShool of Computer SieneUniversity of NottinghamUnited Kingdom{nas,nhn}�s.nott.a.uk25th British Colloquium on Theoretial Computer SieneUniversity of Warwik7th April 2009Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: robot ontrollers, video games, aeroplane ontrolsystems...

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryReative Programming
Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: robot ontrollers, video games, aeroplane ontrolsystems...Contrast with transformational programs, whih take all inputat the start of exeution and produe all output at the end(e.g. a ompiler).

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryMotivationExisting reative programming languages make a trade-o�between stati safety guarantees and expressiveness.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryMotivationExisting reative programming languages make a trade-o�between stati safety guarantees and expressiveness.Most emphasise safety properties (suh as the absene ofdeadlok and run-time errors), whih are often ruial inreative domains.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryMotivationExisting reative programming languages make a trade-o�between stati safety guarantees and expressiveness.Most emphasise safety properties (suh as the absene ofdeadlok and run-time errors), whih are often ruial inreative domains.Funtional Reative Programming (FRP) di�ers in that it isvery expressive, but laking in these guarantees.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryMotivationExisting reative programming languages make a trade-o�between stati safety guarantees and expressiveness.Most emphasise safety properties (suh as the absene ofdeadlok and run-time errors), whih are often ruial inreative domains.Funtional Reative Programming (FRP) di�ers in that it isvery expressive, but laking in these guarantees.This work is about using dependent types to get some of thesesafety guarantees within FRP (without sari�ingexpressiveness).Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryOutline1 Motivation2 Outline3 Funtional Reative Programming (FRP)4 Dependently-Typed Programming5 Safe (yet expressive) Feedbak Loops6 SummaryNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryFuntional Reative ProgrammingA funtional approah to reative programming.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → A
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.Signal funtions are (oneptually) funtions mapping signalsto signals.SF A B ≈ Signal A → Signal B
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryFuntional Reative ProgrammingA funtional approah to reative programming.Usually a domain spei� embedding inside an existingfuntional language (e.g. Haskell).Fundamental onept: time varying values alled signals.Signal A ≈ Time → AWe (following the FRP language Yampa) take signal funtionsas the basi building bloks of our language.Signal funtions are (oneptually) funtions mapping signalsto signals.SF A B ≈ Signal A → Signal BExampleRobotController = SF Sensor ControlValueNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).Stateful signal funtions: urrent output an depend upon pastand urrent input (e.g. integration).
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).Stateful signal funtions: urrent output an depend upon pastand urrent input (e.g. integration).Deoupled signal funtions: urrent output only depends uponpast inputs (e.g. time delay).
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).Stateful signal funtions: urrent output an depend upon pastand urrent input (e.g. integration).Deoupled signal funtions: urrent output only depends uponpast inputs (e.g. time delay).We ompose signal funtions to form signal funtion networks.Example
√

∫
delay 3Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySynhronous Data-Flow NetworksExample
sf2

sf3

sf4

sf5
sf1

switch

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySynhronous Data-Flow NetworksExample
sf2

sf3

sf4

sf5
sf1

switch

Similar to the synhronous data-�ow languages. (Esterel,Lustre, Luid Synhrone et...)Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySynhronous Data-Flow NetworksExample
sf2

sf3

sf4

sf5
sf1

switch

Similar to the synhronous data-�ow languages. (Esterel,Lustre, Luid Synhrone et...)FRP di�ers in that it allows dynami higher-order systemstrutures, but laks some of their safety guarantees.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySynhronous Data-Flow NetworksExample
sf2

sf4

sf5
sf1

Similar to the synhronous data-�ow languages. (Esterel,Lustre, Luid Synhrone et...)FRP di�ers in that it allows dynami higher-order systemstrutures, but laks some of their safety guarantees.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySome Primitive Combinators
pure

f

>>>

sf2sf1

loop

sf1

sf2

∗∗∗

sf1

sf2pure : (a → b) → SF a b
≫ : SF a x → SF x b → SF a b
∗∗∗ : SF a x → SF b y → SF (a, b) (x, y)loop : SF (a, x) (b, y) → SF y x → SF a bNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependently-Typed Funtional ProgrammingThe type of the result an depend upon the value of theargument.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependently-Typed Funtional ProgrammingThe type of the result an depend upon the value of theargument.Little distintion between types and values:data an appear in the types;types an be manipulated as data.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependently-Typed Funtional ProgrammingThe type of the result an depend upon the value of theargument.Little distintion between types and values:data an appear in the types;types an be manipulated as data.Types an enode properties of data:propositions as types;programs as proofs.
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependently-Typed Funtional ProgrammingThe type of the result an depend upon the value of theargument.Little distintion between types and values:data an appear in the types;types an be manipulated as data.Types an enode properties of data:propositions as types;programs as proofs.We're using Agda (similar to Haskell).
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependently-Typed Funtional ProgrammingThe type of the result an depend upon the value of theargument.Little distintion between types and values:data an appear in the types;types an be manipulated as data.Types an enode properties of data:propositions as types;programs as proofs.We're using Agda (similar to Haskell).Exampledivide : N → (n : N) → n > 0 → Nappend : Vetor A m → Vetor A n → Vetor A (m+n)take : (m : N) → Vetor A n → m 6 n → Vetor A mNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependent Types in FRPWe use dependent types in two ways:

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependent Types in FRPWe use dependent types in two ways:A domain-spei� dependent type system for FRP.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependent Types in FRPWe use dependent types in two ways:A domain-spei� dependent type system for FRP.An implementation (using this type system) embedded in adependently-typed host language (Agda).Currently just a proof of onept implementation.Not yet useable for pratial appliations.But Agda aepts it, proving the soundness of the typesystem.(Agda guarantees totality and termination.)
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDependent Types in FRPWe use dependent types in two ways:A domain-spei� dependent type system for FRP.An implementation (using this type system) embedded in adependently-typed host language (Agda).Currently just a proof of onept implementation.Not yet useable for pratial appliations.But Agda aepts it, proving the soundness of the typesystem.(Agda guarantees totality and termination.)The rest of the talk will be about one aspet of the typesystem: ensuring safe feedbak loops.Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDeoupling CylesBadly de�ned feedbak loops an ause a program to diverge.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDeoupling CylesBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are safe if somewhere in the yle they arebroken by a deoupled signal funtion.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDeoupling CylesBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are safe if somewhere in the yle they arebroken by a deoupled signal funtion.Methods of deoupling: delays, onstants, some primitives(e.g. integration using the retangle rule). . .
Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryDeoupling CylesBadly de�ned feedbak loops an ause a program to diverge.Feedbak loops are safe if somewhere in the yle they arebroken by a deoupled signal funtion.Methods of deoupling: delays, onstants, some primitives(e.g. integration using the retangle rule). . .Example
Instantaneous Loop

dup+

+1

Decoupled Loop

+ dup

delay 5Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryExisting Approahes
Existing languages either rely on the programmer to orretlyde�ne feedbak loops...Does not restrit expressiveness.Easy to introdue bugs into programs.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryExisting Approahes
Existing languages either rely on the programmer to orretlyde�ne feedbak loops...Does not restrit expressiveness.Easy to introdue bugs into programs....or require expliit use of a spei� delay primitive in allreursive (looping) de�nitions.Can be on�rmed as safe by the type heker (onservatively).Limits expressiveness (annot use dynami or higher ordersignal funtions for deoupling).

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryOur Approah: Deoupledness in the TypesWe index the types of signal funtions by their deoupledness.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryOur Approah: Deoupledness in the TypesWe index the types of signal funtions by their deoupledness.The types then enfore that feedbak loops are deoupled.

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummaryOur Approah: Deoupledness in the TypesWe index the types of signal funtions by their deoupledness.The types then enfore that feedbak loops are deoupled.de = trueinst = falsepure : (a → b) → SF a b inst
≫ : SF a x d1 → SF x b d2 → SF a b (d1 ∨ d2)
∗∗∗ : SF a x d1 → SF b y d2 → SF (a, b) (x, y) (d1 ∧ d2)loop : SF (a, x) (b, y) d → SF y x de → SF a b d

loop

sf1

sf2Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

Motivation Outline FRP DTP Feedbak Loops SummarySummary
FRP and synhronous data-�ow languages make a trade-o�between expressiveness and safety.Dependent types allow us to have FRP with safety guarantees,while retaining dynami higher-order data-�ow.An example is traking deoupledness to prevent instantaneousfeedbak loops.See our paper for further details:http://www.s.nott.a.uk/∼nas/ifp09.pdf

Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types

	Motivation
	Outline
	Functional Reactive Programming (FRP)
	Dependently-Typed Programming
	Safe (yet expressive) Feedback Loops
	Summary

