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Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.
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Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.

@ Examples: robot controllers, video games, aeroplane control
systems...

@ Contrast with transformational programs, which take all input
at the start of execution and produce all output at the end
(e.g. a compiler).
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Motivation

Motivation

@ Existing reactive programming languages make a trade-off
between static safety guarantees and expressiveness.

@ Most emphasise safety properties (such as the absence of
deadlock and run-time errors), which are often crucial in
reactive domains.

@ Functional Reactive Programming (FRP) differs in that it is
very expressive, but lacking in these guarantees.

@ This work is about using dependent types to get some of these
safety guarantees within FRP (without sacrificing
expressiveness).
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Outline

Outline

@ Motivation

© Outline

© Functional Reactive Programming (FRP)
@ Dependently-Typed Programming

© Safe (yet expressive) Feedback Loops

Q Summary
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FRP

Functional Reactive Programming

@ A functional approach to reactive programming.
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FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

@ We (following the FRP language Yampa) take signal functions
as the basic building blocks of our language.

@ Signal functions are (conceptually) functions mapping signals
to signals.

SF AB ~ Signal A — Signal B

RobotController = SF Sensor ControlValue
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FRP

Signal Functions Characteristics

@ All signal functions are (temporally) causal: current output
does not depend upon future input.
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FRP

Signal Functions Characteristics

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We identify some subsets of the causal signal functions:

o Stateless signals functions: current output only depends upon
current input (e.g. square root).

@ Stateful signal functions: current output can depend upon past
and current input (e.g. integration).

o Decoupled signal functions: current output only depends upon
past inputs (e.g. time delay).

@ We compose signal functions to form signal function networks.
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FRP

Synchronous Data-Flow Networks
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Synchronous Data-Flow Networks
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Lustre, Lucid Synchrone etc...)

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Synchronous Data-Flow Networks

@ Similar to the synchronous data-flow languages. (Esterel,
Lustre, Lucid Synchrone etc...)

o FRP differs in that it allows dynamic higher-order system
structures, but lacks some of their safety guarantees.
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FRP

Some Primitive Combinators

>

pure
sfl sf2

o loop
l' sfl
sf2 ' sf2 .

pure :(a —b) — SFab

> _ :SFax — SFxb — SFab

_#_ :SFax — SFby — SF (a,b) (x,y)
loop : SF (a,x) (b,y) - SFyx — SFab
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DTP

Dependently-Typed Functional Programming

@ The type of the result can depend upon the value of the
argument.
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DTP

Dependently-Typed Functional Programming

@ The type of the result can depend upon the value of the
argument.
o Little distinction between types and values:

o data can appear in the types;

o types can be manipulated as data.
@ Types can encode properties of data:

@ propositions as types;

& programs as proofs.

@ We're using Agda (similar to Haskell).

dividle :N —-(n:N) -n>0—-N
append : Vector A m — Vector An — Vector A (m+n)

take :(m:N) — Vector An — m < n — Vector Am
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Dependent Types in FRP

@ We use dependent types in two ways:
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Dependent Types in FRP

@ We use dependent types in two ways:

@ A domain-specific dependent type system for FRP.
o An implementation (using this type system) embedded in a
dependently-typed host language (Agda).
@ Currently just a proof of concept implementation.
@ Not yet useable for practical applications.
o But Agda accepts it, proving the soundness of the type
system.
(Agda guarantees totality and termination.)
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Dependent Types in FRP

@ We use dependent types in two ways:

@ A domain-specific dependent type system for FRP.
o An implementation (using this type system) embedded in a
dependently-typed host language (Agda).
@ Currently just a proof of concept implementation.
@ Not yet useable for practical applications.

o But Agda accepts it, proving the soundness of the type
system.

o (Agda guarantees totality and termination.)

@ The rest of the talk will be about one aspect of the type
system: ensuring safe feedback loops.
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Feedback Loops

Decoupling Cycles

o Badly defined feedback loops can cause a program to diverge.
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Decoupling Cycles

o Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are safe if somewhere in the cycle they are
broken by a decoupled signal function.

@ Methods of decoupling: delays, constants, some primitives
(e.g. integration using the rectangle rule). ..
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Feedback Loops

Decoupling Cycles

o Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are safe if somewhere in the cycle they are
broken by a decoupled signal function.

@ Methods of decoupling: delays, constants, some primitives
(e.g. integration using the rectangle rule). ..

Decoupled Loop Instantaneous Loop

I.l
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Feedback Loops

Existing Approaches

@ Existing languages either rely on the programmer to correctly
define feedback loops...

o Does not restrict expressiveness.
o Easy to introduce bugs into programs.
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Feedback Loops

Existing Approaches

@ Existing languages either rely on the programmer to correctly
define feedback loops...
o Does not restrict expressiveness.
o Easy to introduce bugs into programs.
@ ...or require explicit use of a specific delay primitive in all
recursive (looping) definitions.
o Can be confirmed as safe by the type checker (conservatively).
o Limits expressiveness (cannot use dynamic or higher order
signal functions for decoupling).
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Feedback Loops

Our Approach: Decoupledness in the Types

@ \We index the types of signal functions by their decoupledness.
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Feedback Loops
Our Approach: Decoupledness in the Types

@ \We index the types of signal functions by their decoupledness.
@ The types then enforce that feedback loops are decoupled.

dec = true
inst = false

pure :(a — b) — SFabinst

_>>_ :SFaxd; - SFxbd, — SFab (d; Vdy)

_#_ :SFaxd; — SFbydy — SF (a,b) (x,y) (di A dp)
loop :SF(a,x) (b,y)d — SFyxdec — SFabd

loop

sfl

S
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Summary

Summary

@ FRP and synchronous data-flow languages make a trade-off
between expressiveness and safety.

@ Dependent types allow us to have FRP with safety guarantees,
while retaining dynamic higher-order data-flow.

@ An example is tracking decoupledness to prevent instantaneous
feedback loops.

@ See our paper for further details:
http://www.cs.nott.ac.uk/~nas/icfp09.pdf
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