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Reative Program: one that ontinually interats with itsenvironment, interleaving input and output in a timely manner.Examples: robot ontrollers, video games, aeroplane ontrolsystems...Contrast with transformational programs, whih take all inputat the start of exeution and produe all output at the end(e.g. a ompiler).
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Motivation Outline FRP DTP Feedbak Loops SummarySignal Funtions CharateristisAll signal funtions are (temporally) ausal: urrent outputdoes not depend upon future input.We identify some subsets of the ausal signal funtions:Stateless signals funtions: urrent output only depends uponurrent input (e.g. square root).Stateful signal funtions: urrent output an depend upon pastand urrent input (e.g. integration).Deoupled signal funtions: urrent output only depends uponpast inputs (e.g. time delay).We ompose signal funtions to form signal funtion networks.Example
√

∫
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∗∗∗

sf1

sf2pure : (a → b) → SF a b
≫ : SF a x → SF x b → SF a b
∗∗∗ : SF a x → SF b y → SF (a, b) (x, y)loop : SF (a, x) (b, y) → SF y x → SF a bNeil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types
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Instantaneous Loop
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Decoupled Loop
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Existing languages either rely on the programmer to orretlyde�ne feedbak loops...Does not restrit expressiveness.Easy to introdue bugs into programs....or require expliit use of a spei� delay primitive in allreursive (looping) de�nitions.Can be on�rmed as safe by the type heker (onservatively).Limits expressiveness (annot use dynami or higher ordersignal funtions for deoupling).
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Motivation Outline FRP DTP Feedbak Loops SummaryOur Approah: Deoupledness in the TypesWe index the types of signal funtions by their deoupledness.The types then enfore that feedbak loops are deoupled.de = trueinst = falsepure : (a → b) → SF a b inst
≫ : SF a x d1 → SF x b d2 → SF a b (d1 ∨ d2)
∗∗∗ : SF a x d1 → SF b y d2 → SF (a, b) (x, y) (d1 ∧ d2)loop : SF (a, x) (b, y) d → SF y x de → SF a b d

loop

sf1

sf2Neil Sulthorpe and Henrik Nilsson Safe FRP through Dependent Types
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FRP and synhronous data-�ow languages make a trade-o�between expressiveness and safety.Dependent types allow us to have FRP with safety guarantees,while retaining dynami higher-order data-�ow.An example is traking deoupledness to prevent instantaneousfeedbak loops.See our paper for further details:http://www.s.nott.a.uk/∼nas/ifp09.pdf
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