Safe Functional Reactive Programming through
Dependent Types

Neil Sculthorpe and Henrik Nilsson

School of Computer Science
University of Nottingham
United Kingdom
{nas,nhn}@cs.nott.ac.uk

25th British Colloquium on Theoretical Computer Science

University of Warwick
7th April 2009

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.

@ Examples: robot controllers, video games, aeroplane control
systems...

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation

Reactive Programming

@ Reactive Program: one that continually interacts with its
environment, interleaving input and output in a timely manner.

@ Examples: robot controllers, video games, aeroplane control
systems...

@ Contrast with transformational programs, which take all input
at the start of execution and produce all output at the end
(e.g. a compiler).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation

Motivation

@ Existing reactive programming languages make a trade-off
between static safety guarantees and expressiveness.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation

Motivation

@ Existing reactive programming languages make a trade-off
between static safety guarantees and expressiveness.

@ Most emphasise safety properties (such as the absence of
deadlock and run-time errors), which are often crucial in
reactive domains.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation

Motivation

@ Existing reactive programming languages make a trade-off
between static safety guarantees and expressiveness.

@ Most emphasise safety properties (such as the absence of
deadlock and run-time errors), which are often crucial in
reactive domains.

@ Functional Reactive Programming (FRP) differs in that it is
very expressive, but lacking in these guarantees.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Motivation

Motivation

@ Existing reactive programming languages make a trade-off
between static safety guarantees and expressiveness.

@ Most emphasise safety properties (such as the absence of
deadlock and run-time errors), which are often crucial in
reactive domains.

@ Functional Reactive Programming (FRP) differs in that it is
very expressive, but lacking in these guarantees.

@ This work is about using dependent types to get some of these
safety guarantees within FRP (without sacrificing
expressiveness).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Outline

Outline

@ Motivation

© Outline

© Functional Reactive Programming (FRP)
@ Dependently-Typed Programming

© Safe (yet expressive) Feedback Loops

Q Summary

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Functional Reactive Programming

@ A functional approach to reactive programming.
@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

@ We (following the FRP language Yampa) take signal functions
as the basic building blocks of our language.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

@ We (following the FRP language Yampa) take signal functions
as the basic building blocks of our language.

@ Signal functions are (conceptually) functions mapping signals
to signals.

SF AB ~ Signal A — Signal B

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Functional Reactive Programming

@ A functional approach to reactive programming.

@ Usually a domain specific embedding inside an existing
functional language (e.g. Haskell).

@ Fundamental concept: time varying values called signals.

Signal A ~ Time — A

@ We (following the FRP language Yampa) take signal functions
as the basic building blocks of our language.

@ Signal functions are (conceptually) functions mapping signals
to signals.

SF AB ~ Signal A — Signal B

RobotController = SF Sensor ControlValue

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Signal Functions Characteristics

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Signal Functions Characteristics

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We identify some subsets of the causal signal functions:

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Signal Functions Characteristics

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We identify some subsets of the causal signal functions:

o Stateless signals functions: current output only depends upon
current input (e.g. square root).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Signal Functions Characteristics

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We identify some subsets of the causal signal functions:

o Stateless signals functions: current output only depends upon
current input (e.g. square root).

@ Stateful signal functions: current output can depend upon past
and current input (e.g. integration).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Signal Functions Characteristics

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We identify some subsets of the causal signal functions:

o Stateless signals functions: current output only depends upon
current input (e.g. square root).

@ Stateful signal functions: current output can depend upon past
and current input (e.g. integration).

o Decoupled signal functions: current output only depends upon
past inputs (e.g. time delay).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Signal Functions Characteristics

@ All signal functions are (temporally) causal: current output
does not depend upon future input.

@ We identify some subsets of the causal signal functions:

o Stateless signals functions: current output only depends upon
current input (e.g. square root).

@ Stateful signal functions: current output can depend upon past
and current input (e.g. integration).

o Decoupled signal functions: current output only depends upon
past inputs (e.g. time delay).

@ We compose signal functions to form signal function networks.

el bl 3

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types




FRP

Synchronous Data-Flow Networks

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Synchronous Data-Flow Networks

@ Similar to the synchronous data-flow languages. (Esterel,
Lustre, Lucid Synchrone etc...)

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Synchronous Data-Flow Networks

@ Similar to the synchronous data-flow languages. (Esterel,
Lustre, Lucid Synchrone etc...)

o FRP differs in that it allows dynamic higher-order system
structures, but lacks some of their safety guarantees.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Synchronous Data-Flow Networks

@ Similar to the synchronous data-flow languages. (Esterel,
Lustre, Lucid Synchrone etc...)

o FRP differs in that it allows dynamic higher-order system
structures, but lacks some of their safety guarantees.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



FRP

Some Primitive Combinators

>

pure
sfl sf2

o loop
l' sfl
sf2 ' sf2 .

pure :(a —b) — SFab

> _ :SFax — SFxb — SFab

_#_ :SFax — SFby — SF (a,b) (x,y)
loop : SF (a,x) (b,y) - SFyx — SFab

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



DTP

Dependently-Typed Functional Programming

@ The type of the result can depend upon the value of the
argument.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



DTP

Dependently-Typed Functional Programming

@ The type of the result can depend upon the value of the
argument.
o Little distinction between types and values:

o data can appear in the types;
o types can be manipulated as data.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



DTP

Dependently-Typed Functional Programming

@ The type of the result can depend upon the value of the
argument.
o Little distinction between types and values:

o data can appear in the types;
o types can be manipulated as data.

@ Types can encode properties of data:
@ propositions as types;
@ programs as proofs.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



DTP

Dependently-Typed Functional Programming

@ The type of the result can depend upon the value of the
argument.
o Little distinction between types and values:

o data can appear in the types;

o types can be manipulated as data.
@ Types can encode properties of data:

@ propositions as types;

& programs as proofs.

@ We're using Agda (similar to Haskell).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



DTP

Dependently-Typed Functional Programming

@ The type of the result can depend upon the value of the
argument.
o Little distinction between types and values:

o data can appear in the types;

o types can be manipulated as data.
@ Types can encode properties of data:

@ propositions as types;

& programs as proofs.

@ We're using Agda (similar to Haskell).

dividle :N —-(n:N) -n>0—-N
append : Vector A m — Vector An — Vector A (m+n)

take :(m:N) — Vector An — m < n — Vector Am

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types




Dependent Types in FRP

@ We use dependent types in two ways:

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Dependent Types in FRP

@ We use dependent types in two ways:
@ A domain-specific dependent type system for FRP.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Dependent Types in FRP

@ We use dependent types in two ways:

@ A domain-specific dependent type system for FRP.
o An implementation (using this type system) embedded in a
dependently-typed host language (Agda).
@ Currently just a proof of concept implementation.
@ Not yet useable for practical applications.
o But Agda accepts it, proving the soundness of the type
system.
(Agda guarantees totality and termination.)

[+

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Dependent Types in FRP

@ We use dependent types in two ways:

@ A domain-specific dependent type system for FRP.
o An implementation (using this type system) embedded in a
dependently-typed host language (Agda).
@ Currently just a proof of concept implementation.
@ Not yet useable for practical applications.

o But Agda accepts it, proving the soundness of the type
system.

o (Agda guarantees totality and termination.)

@ The rest of the talk will be about one aspect of the type
system: ensuring safe feedback loops.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Decoupling Cycles

o Badly defined feedback loops can cause a program to diverge.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Decoupling Cycles

o Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are safe if somewhere in the cycle they are
broken by a decoupled signal function.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Decoupling Cycles

o Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are safe if somewhere in the cycle they are
broken by a decoupled signal function.

@ Methods of decoupling: delays, constants, some primitives
(e.g. integration using the rectangle rule). ..

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Decoupling Cycles

o Badly defined feedback loops can cause a program to diverge.

@ Feedback loops are safe if somewhere in the cycle they are
broken by a decoupled signal function.

@ Methods of decoupling: delays, constants, some primitives
(e.g. integration using the rectangle rule). ..

Decoupled Loop Instantaneous Loop

I.l

elay 5

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Existing Approaches

@ Existing languages either rely on the programmer to correctly
define feedback loops...

o Does not restrict expressiveness.
o Easy to introduce bugs into programs.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Existing Approaches

@ Existing languages either rely on the programmer to correctly
define feedback loops...
o Does not restrict expressiveness.
o Easy to introduce bugs into programs.
@ ...or require explicit use of a specific delay primitive in all
recursive (looping) definitions.
o Can be confirmed as safe by the type checker (conservatively).
o Limits expressiveness (cannot use dynamic or higher order
signal functions for decoupling).

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Our Approach: Decoupledness in the Types

@ \We index the types of signal functions by their decoupledness.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops

Our Approach: Decoupledness in the Types

@ \We index the types of signal functions by their decoupledness.
@ The types then enforce that feedback loops are decoupled.

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Feedback Loops
Our Approach: Decoupledness in the Types

@ \We index the types of signal functions by their decoupledness.
@ The types then enforce that feedback loops are decoupled.

dec = true
inst = false

pure :(a — b) — SFabinst

_>>_ :SFaxd; - SFxbd, — SFab (d; Vdy)

_#_ :SFaxd; — SFbydy — SF (a,b) (x,y) (di A dp)
loop :SF(a,x) (b,y)d — SFyxdec — SFabd

loop

sfl

S

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



Summary

Summary

@ FRP and synchronous data-flow languages make a trade-off
between expressiveness and safety.

@ Dependent types allow us to have FRP with safety guarantees,
while retaining dynamic higher-order data-flow.

@ An example is tracking decoupledness to prevent instantaneous
feedback loops.

@ See our paper for further details:
http://www.cs.nott.ac.uk/~nas/icfp09.pdf

Neil Sculthorpe and Henrik Nilsson Safe FRP through Dependent Types



	Motivation
	Outline
	Functional Reactive Programming (FRP)
	Dependently-Typed Programming
	Safe (yet expressive) Feedback Loops
	Summary

