
Optimisation of Dynamic, Hybrid
Signal Function Networks

Neil Sculthorpe and Henrik Nilsson

School of Computer Science

University of Nottingham, United Kingdom

Trends in Functional Programming, 27th May 2008

Optimising Signal Function Networks, TFP, 27th May 2008 – p.1/25

Outline

• A Brief Example
• Functional Reactive Programming and Yampa
• Our New Conceptual Framework
• A Notion of Change in that Framework
• Optimisation Examples

Optimising Signal Function Networks, TFP, 27th May 2008 – p.2/25

Example Signal Function Network

A synchronous data-flow network with hybrid and
dynamic aspects.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.3/25

Example Signal Function Network

A synchronous data-flow network with hybrid and
dynamic aspects.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.4/25

Example Signal Function Network

A synchronous data-flow network with hybrid and
dynamic aspects.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.5/25

Reactive Programming

• Reactive program: one that continually
interacts with its environment, interleaving
input and output in a timely manner.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.6/25

Reactive Programming

• Reactive program: one that continually
interacts with its environment, interleaving
input and output in a timely manner.

• Examples include robot controllers, video
games, and aeroplane control systems.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.6/25

Reactive Programming

• Reactive program: one that continually
interacts with its environment, interleaving
input and output in a timely manner.

• Examples include robot controllers, video
games, and aeroplane control systems.

• Contrast this with a transformational program:
one that takes all input at the start of
execution, and produces all output at the end
(e.g. a compiler).

Optimising Signal Function Networks, TFP, 27th May 2008 – p.6/25

Reactive Programming

• Reactive program: one that continually
interacts with its environment, interleaving
input and output in a timely manner.

• Examples include robot controllers, video
games, and aeroplane control systems.

• Contrast this with a transformational program:
one that takes all input at the start of
execution, and produces all output at the end
(e.g. a compiler).

• Functional Reactive Programming (FRP) is a
functional approach to reactive programming.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.6/25

Yampa: A recent FRP Implementation

• Signals are time-varying values.

Signal a ≈ Time → a

Optimising Signal Function Networks, TFP, 27th May 2008 – p.7/25

Yampa: A recent FRP Implementation

• Signals are time-varying values.

Signal a ≈ Time → a

• Signal Functions are functions mapping
signals to signals.

SF a b ≈ Signal a → Signal b

Optimising Signal Function Networks, TFP, 27th May 2008 – p.7/25

Yampa: A recent FRP Implementation

• Signals are time-varying values.

Signal a ≈ Time → a

• Signal Functions are functions mapping
signals to signals.

SF a b ≈ Signal a → Signal b

• Signal functions can be stateful or stateless.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.7/25

Yampa: Hybrid and Dynamic
• Hybrid : Conceptually both discrete-time

(events) and continuous-time signals.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.8/25

Yampa: Hybrid and Dynamic
• Hybrid : Conceptually both discrete-time

(events) and continuous-time signals.
• In practice, events (conceptually sparse

occurrences) are embedded in
continuous-time signals.

data Event a = NoEvent

| Event a

Optimising Signal Function Networks, TFP, 27th May 2008 – p.8/25

Yampa: Hybrid and Dynamic
• Hybrid : Conceptually both discrete-time

(events) and continuous-time signals.
• In practice, events (conceptually sparse

occurrences) are embedded in
continuous-time signals.

data Event a = NoEvent

| Event a

• Dynamic: The structure of the network can
change at run-time.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.8/25

Yampa: Hybrid and Dynamic
• Hybrid : Conceptually both discrete-time

(events) and continuous-time signals.
• In practice, events (conceptually sparse

occurrences) are embedded in
continuous-time signals.

data Event a = NoEvent

| Event a

• Dynamic: The structure of the network can
change at run-time.

• Signal functions (not signals!) are first class.
Optimising Signal Function Networks, TFP, 27th May 2008 – p.8/25

Some Yampa Primitives

pure :: (a → b) → SF a b (≫) :: SF a b → SF b c → SF a c

(∗∗∗) :: SF a c → SF b d →

SF (a, b) (c, d)

switch :: SF a (b,Event e) →

(e → SF a b) → SF a b

Optimising Signal Function Networks, TFP, 27th May 2008 – p.9/25

A New Conceptual Framework

• Our new framework better supports
optimisation than Yampa.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.10/25

A New Conceptual Framework

• Our new framework better supports
optimisation than Yampa.

• We stress that this is a conceptual
framework, not an actual implementation.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.10/25

A New Conceptual Framework

• Our new framework better supports
optimisation than Yampa.

• We stress that this is a conceptual
framework, not an actual implementation.

• The key differences from Yampa are:

Optimising Signal Function Networks, TFP, 27th May 2008 – p.10/25

A New Conceptual Framework

• Our new framework better supports
optimisation than Yampa.

• We stress that this is a conceptual
framework, not an actual implementation.

• The key differences from Yampa are:

- a type system that makes a precise
distinction between discrete-time and
continuous-time signals,

Optimising Signal Function Networks, TFP, 27th May 2008 – p.10/25

A New Conceptual Framework

• Our new framework better supports
optimisation than Yampa.

• We stress that this is a conceptual
framework, not an actual implementation.

• The key differences from Yampa are:

- a type system that makes a precise
distinction between discrete-time and
continuous-time signals,

- using (heterogeneous) vectors of signals
instead of nested tuples.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.10/25

Continuous and Discrete Time

We give a new conceptual definition of signals to
make a clear distinction between continuous and
discrete time.

type CSignal a ≈ Time → a

type ESignal a ≈ Time → Maybe a

data Signal a = C (CSignal a)

| E (ESignal a)

Optimising Signal Function Networks, TFP, 27th May 2008 – p.11/25

Signal Vectors

Instead of tuples, we introduce signal vectors (a
type level construct) to combine signals.

SigVec = 〈〉

| 〈C t〉

| 〈E t〉

| SigVec :++: SigVec

Optimising Signal Function Networks, TFP, 27th May 2008 – p.12/25

Signal Vectors

Instead of tuples, we introduce signal vectors (a
type level construct) to combine signals.

SigVec = 〈〉

| 〈C t〉

| 〈E t〉

| SigVec :++: SigVec

type (SigVec as ,SigVec bs) ⇒ SF as bs ≈ as → bs

Optimising Signal Function Networks, TFP, 27th May 2008 – p.12/25

Primitives in this framework

pure :: (a → b) → SF 〈td a〉 〈td b〉 (≫)::SF as bs → SF bs cs → SF as cs

(∗∗∗) :: SF as cs → SF bs ds →

SF (as :++: bs) (cs :++: ds)

switch ::SF as (〈E e〉 :++: bs) →

(e → SF as bs) → SF as bs

Optimising Signal Function Networks, TFP, 27th May 2008 – p.13/25

Why is this useful for Optimisation?

• While we model time as continuous, at the
implementation level a signal function
network is executed over a discrete sequence
of sample times.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.14/25

Why is this useful for Optimisation?

• While we model time as continuous, at the
implementation level a signal function
network is executed over a discrete sequence
of sample times.

• Many signal functions will produce the same
output at many (if not all) sample times.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.14/25

Why is this useful for Optimisation?

• While we model time as continuous, at the
implementation level a signal function
network is executed over a discrete sequence
of sample times.

• Many signal functions will produce the same
output at many (if not all) sample times.

• We would like to avoid re-computation of
unchanged signals.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.14/25

Change

We need a precise notion of change, which we
define as follows:

Optimising Signal Function Networks, TFP, 27th May 2008 – p.15/25

Change

We need a precise notion of change, which we
define as follows:

• A continuous-time signal is changing iff its
value at the current time sample differs from
its value at the preceding time sample.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.15/25

Change

We need a precise notion of change, which we
define as follows:

• A continuous-time signal is changing iff its
value at the current time sample differs from
its value at the preceding time sample.

• An event signal is changing iff there is an
event occurrence at the current time sample.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.15/25

Signal Function Change Classifications

• Unchanging (U) signal functions produce
unchanging output.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.16/25

Signal Function Change Classifications

• Unchanging (U) signal functions produce
unchanging output.

• Input-Dependent (I) signal functions where
unchanging input ⇒ unchanging output.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.16/25

Signal Function Change Classifications

• Unchanging (U) signal functions produce
unchanging output.

• Input-Dependent (I) signal functions where
unchanging input ⇒ unchanging output.

• Varying (V) signal functions where the output
may always change, regardless of input.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.16/25

Examples

constant :: c → SFU as 〈C c〉

never :: SFU as 〈E e〉

pure :: (a → b) → SFI 〈td a〉 〈td b〉

edge :: SFI 〈C Bool〉 〈E ()〉

iPre :: a → SFV 〈C a〉 〈C a〉

Optimising Signal Function Networks, TFP, 27th May 2008 – p.17/25

Combining Change Classifications
(≫) :: SFx as bs → SFy bs cs → SF(x >>>> y) as cs

(∗∗∗) :: SFx as cs → SFy bs ds → SF(x ⊔ y) (as :++: bs) (cs :++: ds)

switch :: SFx as (〈E e〉 :++: bs) → (e → SFy as bs) → SF(x ‘sw‘ y) as bs

data ChangeClass = U | I | V deriving (Eq ,Ord)

(>>>>) :: ChangeClass → ChangeClass → ChangeClass

x >>>> U = U

x >>>> V = V

x >>>> I = x

sw :: ChangeClass → ChangeClass → ChangeClass

U ‘sw ‘ y = U

x ‘sw ‘ y = x ⊔ y

Optimising Signal Function Networks, TFP, 27th May 2008 – p.18/25

Some Useful Optimisation Properties

• Any composite unchanging signal function
can be compressed into a single signal
function.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.19/25

Some Useful Optimisation Properties

• Any composite unchanging signal function
can be compressed into a single signal
function.

• Unchanging signal functions distribute into
switches over sequential composition:

sf1U ≫ switch sf2 f

≡

switch (sf1U ≫ sf2) (λa → sf1U ≫ f a)

Optimising Signal Function Networks, TFP, 27th May 2008 – p.19/25

Example Optimisation

constant False ≫ edge ≫ switch (pure id ∗∗∗ constant 5) (λ() → sf)

Optimising Signal Function Networks, TFP, 27th May 2008 – p.20/25

Example Optimisation

never ≫ switch (pure id ∗∗∗ constant 5) (λ() → sf)

Optimising Signal Function Networks, TFP, 27th May 2008 – p.21/25

Example Optimisation

switch (never ≫ pure id ∗∗∗ constant 5) (λ() → never ≫ sf)

Optimising Signal Function Networks, TFP, 27th May 2008 – p.22/25

Example Optimisation

switch (never ∗∗∗ constant 5) (λ() → sf)

Optimising Signal Function Networks, TFP, 27th May 2008 – p.23/25

Example Optimisation

constant 5

Optimising Signal Function Networks, TFP, 27th May 2008 – p.24/25

Summary

• We have discussed:

- Our conceptual framework
- A notion of change within that framework
- Some optimisations that exploit that notion

of change

Optimising Signal Function Networks, TFP, 27th May 2008 – p.25/25

Summary

• We have discussed:

- Our conceptual framework
- A notion of change within that framework
- Some optimisations that exploit that notion

of change

• Our framework also supports run-time
change propagation optimisations.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.25/25

	Outline
	Example Signal Function Network
	Example Signal Function Network
	Example Signal Function Network
	Reactive Programming
	Yampa: A recent FRP Implementation
	Yampa: Hybrid and Dynamic
	Some Yampa Primitives
	A New Conceptual Framework
	Continuous and Discrete Time
	Signal Vectors
	Primitives in this framework
	Why is this useful for Optimisation?
	Change
	Signal Function Change Classifications
	Examples
	Combining Change Classifications
	Some Useful Optimisation Properties
	Example Optimisation
	Example Optimisation
	Example Optimisation
	Example Optimisation
	Example Optimisation
	Summary

