Optimisation of Dynamic, Hybrid Signal Function Networks

Neil Sculthorpe and Henrik Nilsson

School of Computer Science University of Nottingham, United Kingdom

Trends in Functional Programming, 27th May 2008

Optimising Signal Function Networks, TFP, 27th May 2008 - p.1/25

Outline

- A Brief Example
- Functional Reactive Programming and Yampa
- Our New Conceptual Framework
- A Notion of Change in that Framework
- Optimisation Examples

Example Signal Function Network

A synchronous data-flow network with hybrid and dynamic aspects.

Optimising Signal Function Networks, TFP, 27th May 2008 - p.3/25

Example Signal Function Network

A synchronous data-flow network with hybrid and dynamic aspects.

Example Signal Function Network

A synchronous data-flow network with hybrid and dynamic aspects.

 Reactive program: one that continually interacts with its environment, interleaving input and output in a *timely* manner.

- Reactive program: one that continually interacts with its environment, interleaving input and output in a *timely* manner.
- Examples include robot controllers, video games, and aeroplane control systems.

- Reactive program: one that continually interacts with its environment, interleaving input and output in a *timely* manner.
- Examples include robot controllers, video games, and aeroplane control systems.
- Contrast this with a *transformational program*: one that takes all input at the start of execution, and produces all output at the end (e.g. a compiler).

- Reactive program: one that continually interacts with its environment, interleaving input and output in a *timely* manner.
- Examples include robot controllers, video games, and aeroplane control systems.
- Contrast this with a *transformational program*: one that takes all input at the start of execution, and produces all output at the end (e.g. a compiler).
- Functional Reactive Programming (FRP) is a functional approach to reactive programming.

Yampa: A recent FRP Implementation

Signals are time-varying values.

Signal $a \approx Time \rightarrow a$

Yampa: A recent FRP Implementation

Signals are time-varying values.

Signal $a \approx Time \rightarrow a$

Signal Functions are functions mapping signals to signals.

 $SF \ a \ b \approx Signal \ a \rightarrow Signal \ b$

Yampa: A recent FRP Implementation

Signals are time-varying values.

Signal $a \approx Time \rightarrow a$

Signal Functions are functions mapping signals to signals.

 $SF \ a \ b \approx Signal \ a \rightarrow Signal \ b$

Signal functions can be stateful or stateless.

 Hybrid: Conceptually both discrete-time (events) and continuous-time signals.

- Hybrid: Conceptually both discrete-time (events) and continuous-time signals.
- In practice, events (conceptually sparse occurrences) are embedded in continuous-time signals.

data $Event \ a = NoEvent$ | $Event \ a$

- Hybrid: Conceptually both discrete-time (events) and continuous-time signals.
- In practice, events (conceptually sparse occurrences) are embedded in continuous-time signals.

 $\begin{array}{l} \textbf{data } Event \ a = NoEvent \\ \mid Event \ a \end{array}$

 Dynamic: The structure of the network can change at run-time.

- Hybrid: Conceptually both discrete-time (events) and continuous-time signals.
- In practice, events (conceptually sparse occurrences) are embedded in continuous-time signals.

data $Event \ a = NoEvent$ | $Event \ a$

- Dynamic: The structure of the network can change at run-time.
- Signal functions (not signals!) are first class.

Some Yampa Primitives

$$pure :: (a \to b) \to SF \ a \ b$$

 $(\gg) :: SF \ a \ b \to SF \ b \ c \to SF \ a \ c$

switch sf f

 $(***) :: SF \ a \ c \to SF \ b \ d \to$ $SF \ (a, b) \ (c, d)$

switch :: SF $a (b, Event e) \rightarrow$ $(e \rightarrow SF \ a \ b) \rightarrow SF \ a \ b$

 Our new framework better supports optimisation than Yampa.

- Our new framework better supports optimisation than Yampa.
- We stress that this is a *conceptual* framework, not an actual implementation.

- Our new framework better supports optimisation than Yampa.
- We stress that this is a *conceptual* framework, not an actual implementation.
- The key differences from Yampa are:

- Our new framework better supports optimisation than Yampa.
- We stress that this is a *conceptual* framework, not an actual implementation.
- The key differences from Yampa are:
 - a type system that makes a precise distinction between *discrete-time* and *continuous-time* signals,

- Our new framework better supports optimisation than Yampa.
- We stress that this is a *conceptual* framework, not an actual implementation.
- The key differences from Yampa are:
 - a type system that makes a precise distinction between *discrete-time* and *continuous-time* signals,
 - using (heterogeneous) vectors of signals instead of nested tuples.

Continuous and Discrete Time

We give a new conceptual definition of signals to make a clear distinction between continuous and discrete time.

type CSignal $a \approx Time \rightarrow a$ **type** ESignal $a \approx Time \rightarrow Maybe a$

data Signal a = C (CSignal a) | E (ESignal a) **Signal Vectors**

Instead of tuples, we introduce *signal vectors* (a type level construct) to combine signals.

 $SigVec = \langle \rangle$ $| \langle C t \rangle$ $| \langle E t \rangle$ | SigVec :::: SigVec

Signal Vectors

Instead of tuples, we introduce *signal vectors* (a type level construct) to combine signals.

 $SigVec = \langle \rangle$ $| \langle C t \rangle$ $| \langle E t \rangle$ | SigVec : :: SigVec

type $(SigVec \ as, SigVec \ bs) \Rightarrow SF \ as \ bs \approx as \rightarrow bs$

Primitives in this framework

 $pure :: (a \to b) \to SF \langle td \ a \rangle \ \langle td \ b \rangle$

 $(***) :: SF as cs \to SF bs ds \to$ SF (as :++: bs) (cs :++: ds)

switch :: SF as $(\langle E \ e \rangle : :: bs) \rightarrow$ $(e \rightarrow SF \ as \ bs) \rightarrow SF \ as \ bs$

Why is this useful for Optimisation?

 While we model time as continuous, at the implementation level a signal function network is executed over a discrete sequence of sample times.

Why is this useful for Optimisation?

- While we model time as continuous, at the implementation level a signal function network is executed over a discrete sequence of sample times.
- Many signal functions will produce the same output at many (if not all) sample times.

Why is this useful for Optimisation?

- While we model time as continuous, at the implementation level a signal function network is executed over a discrete sequence of sample times.
- Many signal functions will produce the same output at many (if not all) sample times.
- We would like to avoid re-computation of unchanged signals.

We need a precise notion of change, which we define as follows:

Change

We need a precise notion of change, which we define as follows:

 A continuous-time signal is changing *iff* its value at the current time sample differs from its value at the preceding time sample.

Change

We need a precise notion of change, which we define as follows:

- A continuous-time signal is changing *iff* its value at the current time sample differs from its value at the preceding time sample.
- An event signal is changing *iff* there is an event occurrence at the current time sample.

Signal Function Change Classifications

 Unchanging (U) signal functions produce unchanging output.

Signal Function Change Classifications

 Unchanging (U) signal functions produce unchanging output.

 Input-Dependent (I) signal functions where unchanging input ⇒ unchanging output.

Signal Function Change Classifications

- Unchanging (U) signal functions produce unchanging output.
- Input-Dependent (I) signal functions where unchanging input ⇒ unchanging output.
- Varying (V) signal functions where the output may always change, regardless of input.

Examples

constant :: $c \to SF_U$ as $\langle C \ c \rangle$

never $:: SF_U as \langle E e \rangle$

pure
$$:: (a \to b) \to SF_I \langle td \ a \rangle \langle td \ b \rangle$$

 $edge :: SF_I \langle C Bool \rangle \langle E () \rangle$

$$iPre :: a \to SF_V \langle C a \rangle \langle C a \rangle$$

Combining Change Classifications

 (\gg) :: SF_x as $bs \to SF_y$ bs $cs \to SF_{(x \gg y)}$ as cs $(**) \quad :: SF_x \ as \ cs \to SF_y \ bs \ ds \to SF_{(x \sqcup y)} \ (as : : bs) \ (cs : : ds)$ $switch :: SF_x \ as \ (\langle E \ e \rangle : :: bs) \rightarrow (e \rightarrow SF_y \ as \ bs) \rightarrow SF_{(x \ sw' \ y)} \ as \ bs$ data $ChangeClass = U \mid I \mid V$ deriving (Eq, Ord) (\gg) :: ChangeClass \rightarrow ChangeClass \rightarrow ChangeClass $x \gg U = U$ $x \implies V = V$ $x \gg I = x$:: $ChangeClass \rightarrow ChangeClass \rightarrow ChangeClass$ SWU 'sw' y = Ux 'sw' $y = x \sqcup y$

Some Useful Optimisation Properties

 Any composite *unchanging* signal function can be compressed into a single signal function.

Some Useful Optimisation Properties

- Any composite *unchanging* signal function can be compressed into a single signal function.
- Unchanging signal functions distribute into switches over sequential composition:

 $sf1_U \gg switch sf2 f$

 \equiv

switch $(sf1_U \gg sf2) (\lambda a \rightarrow sf1_U \gg f a)$

constant False \gg edge \gg switch (pure id \approx constant 5) (λ () \rightarrow sf)

never \gg switch (pure id \approx constant 5) (λ () \rightarrow sf)

Optimising Signal Function Networks, TFP, 27th May 2008 - p.21/25

switch (never \gg pure id \approx constant 5) (λ () \rightarrow never \gg sf)

switch (never $\ast \ast$ constant 5) $(\lambda() \rightarrow sf)$

constant 5

Summary

- We have discussed:
 - Our conceptual framework
 - A notion of change within that framework
 - Some optimisations that exploit that notion of change

Summary

- We have discussed:
 - Our conceptual framework
 - A notion of change within that framework
 - Some optimisations that exploit that notion of change
- Our framework also supports run-time change propagation optimisations.