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Example Signal Function Network

A synchronous data-flow network with hybrid and
dynamic aspects.
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Reactive Programming

• Reactive program: one that continually
interacts with its environment, interleaving
input and output in a timely manner.
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Reactive Programming

• Reactive program: one that continually
interacts with its environment, interleaving
input and output in a timely manner.

• Examples include robot controllers, video
games, and aeroplane control systems.

• Contrast this with a transformational program:
one that takes all input at the start of
execution, and produces all output at the end
(e.g. a compiler).

• Functional Reactive Programming (FRP) is a
functional approach to reactive programming.
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Yampa: A recent FRP Implementation

• Signals are time-varying values.

Signal a ≈ Time → a
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Yampa: A recent FRP Implementation

• Signals are time-varying values.

Signal a ≈ Time → a

• Signal Functions are functions mapping
signals to signals.

SF a b ≈ Signal a → Signal b

• Signal functions can be stateful or stateless.
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Yampa: Hybrid and Dynamic
• Hybrid : Conceptually both discrete-time

(events) and continuous-time signals.
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• Dynamic: The structure of the network can
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Yampa: Hybrid and Dynamic
• Hybrid : Conceptually both discrete-time

(events) and continuous-time signals.
• In practice, events (conceptually sparse

occurrences) are embedded in
continuous-time signals.

data Event a = NoEvent

| Event a

• Dynamic: The structure of the network can
change at run-time.

• Signal functions (not signals!) are first class.
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Some Yampa Primitives

pure :: (a → b) → SF a b (≫) :: SF a b → SF b c → SF a c

(∗∗∗) :: SF a c → SF b d →

SF (a, b) (c, d)

switch :: SF a (b,Event e) →

(e → SF a b) → SF a b
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A New Conceptual Framework

• Our new framework better supports
optimisation than Yampa.
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A New Conceptual Framework

• Our new framework better supports
optimisation than Yampa.

• We stress that this is a conceptual
framework, not an actual implementation.

• The key differences from Yampa are:

- a type system that makes a precise
distinction between discrete-time and
continuous-time signals,

- using (heterogeneous) vectors of signals
instead of nested tuples.
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Continuous and Discrete Time

We give a new conceptual definition of signals to
make a clear distinction between continuous and
discrete time.

type CSignal a ≈ Time → a

type ESignal a ≈ Time → Maybe a

data Signal a = C (CSignal a)

| E (ESignal a)
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Signal Vectors

Instead of tuples, we introduce signal vectors (a
type level construct) to combine signals.

SigVec = 〈〉

| 〈C t〉

| 〈E t〉

| SigVec :++: SigVec
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Signal Vectors

Instead of tuples, we introduce signal vectors (a
type level construct) to combine signals.

SigVec = 〈〉

| 〈C t〉

| 〈E t〉

| SigVec :++: SigVec

type (SigVec as ,SigVec bs) ⇒ SF as bs ≈ as → bs
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Primitives in this framework

pure :: (a → b) → SF 〈td a〉 〈td b〉 (≫)::SF as bs → SF bs cs → SF as cs

(∗∗∗) :: SF as cs → SF bs ds →

SF (as :++: bs) (cs :++: ds)

switch ::SF as ( 〈E e〉 :++: bs) →

(e → SF as bs) → SF as bs
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Why is this useful for Optimisation?

• While we model time as continuous, at the
implementation level a signal function
network is executed over a discrete sequence
of sample times.
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Why is this useful for Optimisation?

• While we model time as continuous, at the
implementation level a signal function
network is executed over a discrete sequence
of sample times.

• Many signal functions will produce the same
output at many (if not all) sample times.

• We would like to avoid re-computation of
unchanged signals.
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Change

We need a precise notion of change, which we
define as follows:
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Change

We need a precise notion of change, which we
define as follows:

• A continuous-time signal is changing iff its
value at the current time sample differs from
its value at the preceding time sample.

• An event signal is changing iff there is an
event occurrence at the current time sample.
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Signal Function Change Classifications

• Unchanging (U) signal functions produce
unchanging output.
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Signal Function Change Classifications

• Unchanging (U) signal functions produce
unchanging output.

• Input-Dependent (I) signal functions where
unchanging input ⇒ unchanging output.

• Varying (V) signal functions where the output
may always change, regardless of input.

Optimising Signal Function Networks, TFP, 27th May 2008 – p.16/25



Examples

constant :: c → SFU as 〈C c〉

never :: SFU as 〈E e〉

pure :: (a → b) → SFI 〈td a〉 〈td b〉

edge :: SFI 〈C Bool〉 〈E ()〉

iPre :: a → SFV 〈C a〉 〈C a〉
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Combining Change Classifications
(≫) :: SFx as bs → SFy bs cs → SF(x >>>> y) as cs

(∗∗∗) :: SFx as cs → SFy bs ds → SF(x ⊔ y) (as :++: bs) (cs :++: ds)

switch :: SFx as ( 〈E e〉 :++: bs) → (e → SFy as bs) → SF(x ‘sw‘ y) as bs

data ChangeClass = U | I | V deriving (Eq ,Ord)

( >>>> ) :: ChangeClass → ChangeClass → ChangeClass

x >>>> U = U

x >>>> V = V

x >>>> I = x

sw :: ChangeClass → ChangeClass → ChangeClass

U ‘sw ‘ y = U

x ‘sw ‘ y = x ⊔ y
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Some Useful Optimisation Properties

• Any composite unchanging signal function
can be compressed into a single signal
function.
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Some Useful Optimisation Properties

• Any composite unchanging signal function
can be compressed into a single signal
function.

• Unchanging signal functions distribute into
switches over sequential composition:

sf1U ≫ switch sf2 f

≡

switch (sf1U ≫ sf2 ) (λa → sf1U ≫ f a)
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Example Optimisation

constant False ≫ edge ≫ switch (pure id ∗∗∗ constant 5) (λ() → sf )
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Example Optimisation

never ≫ switch (pure id ∗∗∗ constant 5) (λ() → sf )
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Example Optimisation

switch (never ≫ pure id ∗∗∗ constant 5) (λ() → never ≫ sf )
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Example Optimisation

switch (never ∗∗∗ constant 5) (λ() → sf )
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Example Optimisation

constant 5
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Summary

• We have discussed:

- Our conceptual framework
- A notion of change within that framework
- Some optimisations that exploit that notion

of change

Optimising Signal Function Networks, TFP, 27th May 2008 – p.25/25



Summary

• We have discussed:

- Our conceptual framework
- A notion of change within that framework
- Some optimisations that exploit that notion

of change

• Our framework also supports run-time
change propagation optimisations.
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