
HERMIT GHC Core Demo Commands Summary

How to Interact with a HERMIT

Andy Gill, Andrew Farmer, Neil Sculthorpe, Adam Howell,
Robert F. Blair, Ryan Scott, Patrick G. Flor, and Michael Tabone

Functional Programming Group
Information and Telecommunication Technology Center

University of Kansas

Trends in Functional Programming
Provo, Utah

16th May 2013

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Gill et al. How to Interact with a HERMIT

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

HERMIT GHC Core Demo Commands Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Gill et al. How to Interact with a HERMIT

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

HERMIT GHC Core Demo Commands Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Gill et al. How to Interact with a HERMIT

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

HERMIT GHC Core Demo Commands Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Gill et al. How to Interact with a HERMIT

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

HERMIT GHC Core Demo Commands Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Gill et al. How to Interact with a HERMIT

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

HERMIT GHC Core Demo Commands Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:
The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Gill et al. How to Interact with a HERMIT

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

HERMIT GHC Core Demo Commands Summary

The HERMIT Project

Haskell
Compiler

HERMIT
Stack

Glasgow
Haskell

Compiler

Haskell
Module

Haskell
Binary

HERMIT
Kernel

KURE

GHC Core
Support

Rewrite
Primitives

Command
Support

HERMIT

RESTful
Server

HERMIT
Applications

GHC
Plugin

API

Android
HERMIT

Application

Users

Scotty

Warp

Command
Line + Tab
Complete

HERMIT
Script

Reader

HERMIT
Shell

HERMIT
Scripts

Plugin
DSL

Custom
GHC

Plugins

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

Downloading and Running HERMIT

HERMIT requires GHC 7.4 or 7.6 (7.6 recommended)

1 cabal update

2 cabal install hermit

3 hermit Main.hs

The hermit command just invokes GHC with some default flags:

% hermit Main.hs

ghc Main.hs -fforce-recomp -O2 -dcore-lint

-fsimple-list-literals -fplugin=HERMIT

-fplugin-opt=HERMIT:main:Main:

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

GHC Core

type CoreProg = [CoreBind]

data CoreBind = NonRec Var CoreExpr
| Rec [(Var ,CoreExpr)]

data CoreExpr = Var Var
| Lit Literal
| App CoreExpr CoreExpr
| Lam Var CoreExpr
| Let CoreBind CoreExpr
| Case CoreExpr Var Type [CoreAlt]
| Cast CoreExpr Coercion
| Tick CoreTickish CoreExpr
| Type Type
| Coercion Coercion

type CoreAlt = (AltCon, [Var],CoreExpr)

data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

Types

data Type = TyVarTy Var
| AppTy Type Type
| TyConApp TyCon [KindOrType]
| FunTy Type Type
| ForAllTy Var Type
| LitTy TyLit

data Coercion = Refl Type
| TyConAppCo TyCon [Coercion]
| AppCo Coercion Coercion
| ForAllCo TyVar Coercion
| CoVarCo CoVar
| AxiomInstCo CoAxiom [Coercion]
| UnsafeCo Type Type
| SymCo Coercion
| TransCo Coercion Coercion
| NthCo Int Coercion
| InstCo Coercion Type

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

Live Demonstration

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

HERMIT Commands

Core-specific rewrites, e.g.
beta-reduce
eta-expand ’x
case-split ’x
inline

Strategic traversal combinators (from KURE), e.g.
any-td r
repeat r
innermost r

Navigation, e.g.
up, down, left, right, top
consider ’foo
0, 1, 2, . . .

Version control, e.g.
log
back
step
save “myscript.hss”

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations

HERMIT can be used to test/debug RULES

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Gill et al. How to Interact with a HERMIT

HERMIT GHC Core Demo Commands Summary

Summary and Publications

HERMIT is a toolkit for interactive viewing and transformation of
GHC Core programs

Still under development

Previous publications describing or using HERMIT:

The HERMIT in the Machine (Haskell ’12) — describes the HERMIT
implementation
The HERMIT in the Tree (IFL ’12) — describes our experiences
mechanising simple program transformations
Optimizing SYB is Easy! (submitted to ICFP ’13) — uses HERMIT to
optimise generic traversals
KURE (submitted to JFP) — describes the underlying strategic
programming language, using examples from the HERMIT
implementation

Gill et al. How to Interact with a HERMIT

	HERMIT
	GHC Core
	Demo
	Commands
	Summary

