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HERMIT GHC Core Demo Commands Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)
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The HERMIT Project
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Downloading and Running HERMIT

HERMIT requires GHC 7.4 or 7.6 (7.6 recommended)

1 cabal update

2 cabal install hermit

3 hermit Main.hs

The hermit command just invokes GHC with some default flags:

% hermit Main.hs

ghc Main.hs -fforce-recomp -O2 -dcore-lint

-fsimple-list-literals -fplugin=HERMIT

-fplugin-opt=HERMIT:main:Main:
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GHC Core

type CoreProg = [CoreBind ]

data CoreBind = NonRec Var CoreExpr
| Rec [(Var ,CoreExpr)]

data CoreExpr = Var Var
| Lit Literal
| App CoreExpr CoreExpr
| Lam Var CoreExpr
| Let CoreBind CoreExpr
| Case CoreExpr Var Type [CoreAlt ]
| Cast CoreExpr Coercion
| Tick CoreTickish CoreExpr
| Type Type
| Coercion Coercion

type CoreAlt = (AltCon, [Var ],CoreExpr)

data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT
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Types

data Type = TyVarTy Var
| AppTy Type Type
| TyConApp TyCon [KindOrType ]
| FunTy Type Type
| ForAllTy Var Type
| LitTy TyLit

data Coercion = Refl Type
| TyConAppCo TyCon [Coercion ]
| AppCo Coercion Coercion
| ForAllCo TyVar Coercion
| CoVarCo CoVar
| AxiomInstCo CoAxiom [Coercion ]
| UnsafeCo Type Type
| SymCo Coercion
| TransCo Coercion Coercion
| NthCo Int Coercion
| InstCo Coercion Type
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Live Demonstration
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HERMIT Commands

Core-specific rewrites, e.g.
beta-reduce
eta-expand ’x
case-split ’x
inline

Strategic traversal combinators (from KURE), e.g.
any-td r
repeat r
innermost r

Navigation, e.g.
up, down, left, right, top
consider ’foo
0, 1, 2, . . .

Version control, e.g.
log
back
step
save “myscript.hss”
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GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES
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Summary and Publications

HERMIT is a toolkit for interactive viewing and transformation of
GHC Core programs

Still under development

Previous publications describing or using HERMIT:

The HERMIT in the Machine (Haskell ’12) — describes the HERMIT
implementation
The HERMIT in the Tree (IFL ’12) — describes our experiences
mechanising simple program transformations
Optimizing SYB is Easy! (submitted to ICFP ’13) — uses HERMIT to
optimise generic traversals
KURE (submitted to JFP) — describes the underlying strategic
programming language, using examples from the HERMIT
implementation
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