
Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

The HERMIT in the Tree

Neil Sculthorpe

(joint work with Andrew Farmer, Andy Gill and Ed Komp)

Functional Programming Group
Information and Telecommunication Technology Center

University of Kansas

Swansea, Wales
12th March 2014

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code? Haskell 98?

Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code? Haskell 98? Haskell 2010?

Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code? Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code? Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

GHC Core

System F (polymorphic lambda calculus), extended with let-bindings,
constructors and first-class proofs of type equality (coercions).

type Prog = [Bind ]

data Bind = NonRec Var Expr
| Rec [(Var , Expr)]

data Expr = Var Var
| Lit Literal
| App Expr Expr
| Lam Var Expr
| Let Bind Expr
| Case Expr [Alt ]
| Cast Expr Coercion
| Type Type
| Coercion Coercion

type Alt = (Constructor , [Var ], Expr)

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

GHC Core

System F (polymorphic lambda calculus), extended with let-bindings,
constructors and first-class proofs of type equality (coercions).

type Prog = [Bind ]

data Bind = NonRec Var Expr
| Rec [(Var , Expr)]

data Expr = Var Var
| Lit Literal
| App Expr Expr
| Lam Var Expr
| Let Bind Expr
| Case Expr [Alt ]
| Cast Expr Coercion
| Type Type
| Coercion Coercion

type Alt = (Constructor , [Var ], Expr)

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:
The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:
The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:
The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:
The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:
The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

The HERMIT Project

Haskell
Compiler

HERMIT 
Stack

Glasgow
Haskell

Compiler

Haskell
Module

Haskell
Binary

HERMIT
Kernel

KURE

GHC Core
Support

Rewrite
Primitives

Command
Support

HERMIT

RESTful
Server

HERMIT
Applications

GHC
Plugin

API

Android
HERMIT

Application

Users

Scotty

Warp

Command
Line + Tab 
Complete

HERMIT
Script 

Reader

HERMIT
Shell

HERMIT
Scripts

Plugin
DSL

Custom 
GHC 

Plugins

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Downloading and Running HERMIT

HERMIT requires GHC 7.6 or 7.8.

1 cabal update

2 cabal install hermit

3 hermit Main.hs +MyModule1 +MyModule2

The hermit command invokes GHC on Main.hs, and runs HERMIT on
the specified modules.

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Demo: Transforming Fibonacci

data Nat = Zero | Succ Nat

fib :: Nat → Nat
fib Zero = Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ n)) = fib (Succ n) + fib n

fib :: Nat → Nat
fib n = let work :: Nat → (Nat, Nat)

work Zero = (Zero, Succ Zero)
work (Succ m) = let (x, y) = work m

in (y, x + y)
in

fst (work n)

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Demo: Transforming Fibonacci

data Nat = Zero | Succ Nat

fib :: Nat → Nat
fib Zero = Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ n)) = fib (Succ n) + fib n

fib :: Nat → Nat
fib n = let work :: Nat → (Nat, Nat)

work Zero = (Zero, Succ Zero)
work (Succ m) = let (x, y) = work m

in (y, x + y)
in

fst (work n)

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

HERMIT Commands

Core-specific rewrites, e.g.
beta-reduce
eta-expand ’x
inline

Strategy combinators (from KURE), e.g.
any-td r
repeat r
innermost r

Navigation, e.g.
binding-of ’foo, occurrence-of ’x
lam-body, app-arg, case-alt 2

Version control, e.g.
log
back, step
save “myscript.hec”

Presentation, e.g.
set-pp-type Show
set-pp ghc

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Adding Transformations to HERMIT

Two main ways:

Writing a HERMIT-extension Plugin

using KURE on the Core AST
full power of Haskell
easy to make mistakes

Using GHC Rules

lightweight (can be included in the source code of the object program)
type checked by GHC
limited by the expressiveness of RULES

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations

HERMIT can be used to test/debug RULES

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

Summary

HERMIT is a tool for interactively transforming GHC Core programs

Currently very experimental

Ongoing work: support for equational reasoning

Publications describing HERMIT:

The HERMIT in the Machine [FGKS12] — HERMIT implementation
The HERMIT in the Tree [SFG13] — mechanising known
transformations

Publications using HERMIT to prototype new optimisations:

The HERMIT in the Stream [FHG14] — stream fusion
Optimizing SYB is Easy! [AFM14] — data-type–generic programming

Neil Sculthorpe The HERMIT in the Tree



Motivation GHC Core HERMIT Demo: Fib Commands Additions Summary

References

Michael D. Adams, Andrew Farmer, and José Pedro Magalhães.

Optimizing SYB is easy!

In Workshop on Partial Evaluation and Program Manipulation, pages 71–82. ACM,
2014.

Andrew Farmer, Andy Gill, Ed Komp, and Neil Sculthorpe.

The HERMIT in the machine: A plugin for the interactive transformation of GHC
core language programs.

In Haskell Symposium, pages 1–12. ACM, 2012.

Andrew Farmer, Christian Höner zu Siederdissen, and Andy Gill.

The HERMIT in the stream: Fusing Stream Fusion’s concatMap.

In Workshop on Partial Evaluation and Program Manipulation, pages 97–108.
ACM, 2014.

Neil Sculthorpe, Andrew Farmer, and Andy Gill.

The HERMIT in the tree: Mechanizing program transformations in the GHC core
language.

In Implementation and Application of Functional Languages 2012, pages 86–103.
Springer, 2013.

Neil Sculthorpe The HERMIT in the Tree


	Motivation
	GHC Core
	HERMIT
	Demo: Fib
	Commands
	Additions
	Summary

