
Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

The HERMIT in the Tree

Neil Sculthorpe

(joint work with Andrew Farmer, Andy Gill and Ed Komp)

Functional Programming Group
Information and Telecommunication Technology Center

University of Kansas
neil@ittc.ku.edu

Midwest Verification Day
Lawrence, Kansas

20th September 2012

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code?

Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code? Haskell 98?

Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code? Haskell 98? Haskell 2010?

Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code? Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise these transformations:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Our work: transformations in the purely functional language Haskell

Several existing transformation systems for Haskell programs

e.g. HaRe, HERA, PATH, Ultra
but they all operate on Haskell source code (or some variant)

Haskell source code? Haskell 98? Haskell 2010? Glasgow Haskell?

Alternative: GHC Core, the Glasgow Haskell Compiler’s intermediate
language

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Not to be confused with:

The Kansas Hermit (1826–1909).
Abolitionist, Teacher, Lawrence

Founding Father, Brigadier General,

Treehouse Dweller, Long-distance

Walker and Critic of the Lawrence Elite.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Not to be confused with:

The Kansas Hermit (1826–1909).
Abolitionist, Teacher, Lawrence

Founding Father, Brigadier General,

Treehouse Dweller, Long-distance

Walker and Critic of the Lawrence Elite.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Not to be confused with:

The Kansas Hermit (1826–1909).
Abolitionist, Teacher, Lawrence

Founding Father, Brigadier General,

Treehouse Dweller, Long-distance

Walker and Critic of the Lawrence Elite.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Not to be confused with:

The Kansas Hermit (1826–1909).
Abolitionist, Teacher, Lawrence

Founding Father, Brigadier General,

Treehouse Dweller, Long-distance

Walker and Critic of the Lawrence Elite.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Not to be confused with:
The Kansas Hermit (1826–1909).
Abolitionist, Teacher, Lawrence

Founding Father, Brigadier General,

Treehouse Dweller, Long-distance

Walker and Critic of the Lawrence Elite.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Neil Sculthorpe The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html


Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

The HERMIT Project

Haskell
Compiler

HERMIT 
Stack

GUI
Applications

Glasgow
Haskell

Compiler

Haskell
Module

Haskell
Binary

HERMIT
Kernel

KURE

GHC Core
Support

Rewrite
Primitives

Command
Support

HERMIT

HERMIT
Shell

HERMIT
Server

Your
HERMIT

Application

HERMIT
Applications

HERMIT
GUI

Power User

GHC
Plugin

API
RESTful

API

HERMIT
API

Android
HERMIT

Application

Browser
based

HERMIT
Application

Users

HTTP + 
Comet

Future Work

Scotty

Warp

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Downloading and Running HERMIT

HERMIT requires GHC 7.4 (will be 7.6 compatible very soon).

1 cabal update

2 cabal install hermit

3 hermit Main.hs

The hermit command just invokes GHC with some default flags:

ghc Main.hs -fforce-recomp -O2 -dcore-lint

-fsimple-list-literals -fplugin=HERMIT

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

data Nat = Zero | Succ Nat

fib :: Nat → Nat
fib Zero = Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ n)) = fib (Succ n) + fib n

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

data Nat = Zero | Succ Nat

fib :: Nat → Nat
fib Zero = Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ n)) = (case Succ n of

Zero → Zero
Succ Zero → Succ Zero
Succ (Succ m) → fib (Succ m) + fib m)

+
(case n of

Zero → Zero
Succ Zero → Succ Zero
Succ (Succ m) → fib (Succ m) + fib m)

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

HERMIT Commands

Core-specific rewrites, e.g.
beta-reduce
eta-expand ’x
case-split ’x
inline

Strategic traversal combinators (from KURE), e.g.
any-td r
repeat r
innermost r

Navigation, e.g.
up, down, left, right, top
consider ’foo
0, 1, 2, . . .

Version control, e.g.
log
back
step
save “myscript.hss”

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Developing Transformations

Dictionary of
transforms

Scripts of
HERMIT

commands

HERMIT

interactive
session

Using HERMIT
Codifyi

ng tra
nsfo

rm
s

Capturing abstractions

KURE

HERMIT
as a GHC

Plugin

Cycle of
Abstraction

HERMIT
Shell Commands

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Tupling Transformation: Fib

fib :: Nat → Nat
fib Zero = Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ n)) = fib (Succ n) + fib n

fib :: Nat → Nat
fib n = let work :: Nat → (Nat,Nat)

work Zero = (Zero, Succ Zero)
work (Succ m) = let (x, y) = work m

in (y, x + y)
in

fst (work n)

Neil Sculthorpe The HERMIT in the Tree



Motivation HERMIT Demo: fib Commands Development Demo: tupling Summary

Summary

HERMIT is a tool for interactive transformation of GHC Core
programs

Still early in development

Next step: an equational reasoning framework that only allows
correctness preserving transformations

Publications:

The HERMIT in the Machine (Haskell ’12) — describes the HERMIT
implementation
The HERMIT in the Tree (submitted to IFL ’12) – describes our
experiences mechanising existing program transformations

Neil Sculthorpe The HERMIT in the Tree


	Motivation
	HERMIT
	Demo: fib
	Commands
	Development
	Demo: tupling
	Summary

