
Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

The HERMIT in the Tree

Neil Sculthorpe Andrew Farmer Andy Gill

Functional Programming Group
Information and Telecommunication Technology Center

University of Kansas
{neil,afarmer,andygill}@ittc.ku.edu

24th Symposium on
Implementation and Application of Functional Languages

Oxford, England
31st August 2012

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98?

Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98? Haskell 2010?

GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98? Haskell 2010?
GHC-extended Haskell?

Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

GHC Core

type CoreProg = [CoreBind]

data CoreBind = NonRec Var CoreExpr
| Rec [(Var ,CoreExpr)]

data CoreExpr = Var Var
| Lit Literal
| App CoreExpr CoreExpr
| Lam Var CoreExpr
| Let CoreBind CoreExpr
| Case CoreExpr Var Type [CoreAlt]
| Cast CoreExpr Coercion
| Tick CoreTickish CoreExpr
| Type Type
| Coercion Coercion

type CoreAlt = (AltCon, [Var],CoreExpr)

data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Sculthorpe, Farmer & Gill The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Sculthorpe, Farmer & Gill The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Sculthorpe, Farmer & Gill The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Sculthorpe, Farmer & Gill The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Sculthorpe, Farmer & Gill The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:
The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Sculthorpe, Farmer & Gill The HERMIT in the Tree

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Downloading and Running HERMIT

HERMIT requires GHC 7.4 or 7.6 (7.6 recommended)

1 cabal update

2 cabal install hermit

3 hermit Main.hs

The hermit command just invokes GHC with some default flags:

% hermit Main.hs

ghc Main.hs -fforce-recomp -O2 -dcore-lint

-fsimple-list-literals -fplugin=HERMIT

-fplugin-opt=HERMIT:main:Main:

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

data Nat = Zero | Succ Nat

fib :: Nat → Nat
fib Zero = Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ n)) = fib (Succ n) + fib n

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

data Nat = Zero | Succ Nat

fib :: Nat → Nat
fib Zero = Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ n)) = (case Succ n of

Zero → Zero
Succ Zero → Succ Zero
Succ (Succ m) → fib (Succ m) + fib m)

+
(case n of

Zero → Zero
Succ Zero → Succ Zero
Succ (Succ m) → fib (Succ m) + fib m)

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

HERMIT Commands

Core-specific rewrites, e.g.
beta-reduce
eta-expand ’x
case-split ’x
inline

Strategic traversal combinators (from KURE), e.g.
any-td r
repeat r
innermost r

Navigation, e.g.
up, down, left, right, top
consider ’foo
0, 1, 2, . . .

Version control, e.g.
log
back
step
save “myscript.hss”

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Developing Transformations

Dictionary of
transforms

Scripts of
HERMIT

commands

HERMIT

interactive
session

Using HERMIT
Codifyi

ng tra
nsfo

rm
s

Capturing abstractions

KURE

HERMIT
as a GHC

Plugin

Cycle of
Abstraction

HERMIT
Shell Commands

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Transformations Mechanised

We’ve been using HERMIT to mechanise some established program
transformations:

Concatenate Vanishes [Wad89]

Tupling Transformation [Pet84]

Worker/Wrapper [GH09]

In the process we’ve discovered that concatenate vanishes and tupling
transformation can be expressed as instances of worker/wrapper.

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Transformations Mechanised

We’ve been using HERMIT to mechanise some established program
transformations:

Concatenate Vanishes [Wad89]

Tupling Transformation [Pet84]

Worker/Wrapper [GH09]

In the process we’ve discovered that concatenate vanishes and tupling
transformation can be expressed as instances of worker/wrapper.

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Tupling Transformation: Fib

fib :: Nat → Nat
fib Zero = Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ n)) = fib (Succ n) + fib n

fib :: Nat → Nat
fib n = let work :: Nat → (Nat,Nat)

work Zero = (Zero, Succ Zero)
work (Succ m) = let (x, y) = work m

in (y, x + y)
in

fst (work n)

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

Summary

HERMIT is a GHC plugin for interactive transformation of GHC Core
programs

Currently we’re using it to mechanise known program transformations

Next step: an equational reasoning framework that only allows
correctness preserving transformations

For HERMIT implementation details, see:

“The HERMIT in the Machine” (Haskell ’12) [FGKS12]

Sculthorpe, Farmer & Gill The HERMIT in the Tree

Motivation GHC Core HERMIT Demo: fib Commands Transformations Demo: tupling Summary

References

Andrew Farmer, Andy Gill, Ed Komp, and Neil Sculthorpe.
The HERMIT in the machine: A plugin for the interactive
transformation of GHC core language programs.
In Haskell Symposium, pages 1–12. ACM, 2012.

Andy Gill and Graham Hutton.
The worker/wrapper transformation.
Journal of Functional Programming, 19(2):227–251, 2009.

Alberto Pettorossi.
A powerful strategy for deriving efficient programs by transformation.
In LISP and Functional Programming, pages 273–281. ACM, 1984.

Philip Wadler.
The concatenate vanishes.
Technical report, University of Glasgow, 1989.

Sculthorpe, Farmer & Gill The HERMIT in the Tree

	Motivation
	GHC Core
	HERMIT
	Demo: fib
	Commands
	Transformations
	Demo: tupling
	Summary

