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Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language
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GHC Core

data ModGuts = ModGuts { :: [CoreBind ], ...}
data CoreBind = NonRec Id CoreExpr

| Rec [(Id ,CoreExpr)]

data CoreExpr = Var Id
| Lit Literal
| App CoreExpr CoreExpr
| Lam Id CoreExpr
| Let CoreBind CoreExpr
| Case CoreExpr Id Type [CoreAlt ]
| Cast CoreExpr Coercion
| Tick (Tickish Id) CoreExpr
| Type Type
| Coercion Coercion

type CoreAlt = (AltCon, [Id ],CoreExpr)

data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine
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What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)
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The HERMIT Project

Haskell
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Downloading and Running HERMIT

HERMIT requires GHC 7.4.

1 cabal update

2 cabal install hermit

3 hermit Main.hs

The hermit command just invokes GHC with some default flags:

ghc Main.hs -fforce-recomp -O2 -dcore-lint

-fsimple-list-literals -fplugin=HERMIT

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine
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Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

fib :: Int → Int
fib n = if n < 2

then 1
else fib (n− 1) + fib (n− 2)

fib :: Int → Int
fib n = if n < 2 then 1

else (if (n− 1) < 2 then 1
else fib (n− 1− 1) + fib (n− 1− 2)

)
+
(if (n− 2) < 2 then 1

else fib (n− 2− 1) + fib (n− 2− 2)
)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine
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HERMIT Commands

Core-specific rewrites, e.g.
beta-reduce
eta-expand ’x
case-split ’x
inline

Strategic traversal combinators (from KURE), e.g.
any-td r
repeat r
innermost r

Navigation, e.g.
up, down, left, right, top
consider ’foo
0, 1, 2, . . .

Version control, e.g.
log
back
step
save “myscript.hss”

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine
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GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine
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Demonstration: Fast Reverse

Consider transforming the slow (quadratic) version of reverse to the fast
(linear) version:

rev :: [a]→ [a]
rev [ ] = [ ]
rev (x : xs) = rev xs ++ [x]

rev :: [a]→ [a]
rev as = let work :: [a]→ [a]→ [a]

work [ ] ys = ys
work (x : xs) ys = work xs (x : ys)

in
work as [ ]

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine
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HERMIT Summary

A GHC plugin for interactive transformation of GHC Core programs

Still early in development

Next step: an equational reasoning framework that only allows
correctness preserving transformations

See also “The HERMIT in the Tree” (submitted to IFL ’12)
— describes our experiences mechanising known transformations

Feedback and feature requests welcome!

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine
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