
Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

The HERMIT in the Machine

Andrew Farmer Andy Gill Ed Komp Neil Sculthorpe

Functional Programming Group
Information and Telecommunication Technology Center

University of Kansas
{afarmer,andygill,komp,neil}@ittc.ku.edu

Haskell Symposium
Copenhagen, Denmark
13th September 2012

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code?

Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98?

Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98? Haskell 2010?

GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98? Haskell 2010?
GHC-extended Haskell?

Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Motivation

There is often a trade-off between the clarity and efficiency of a
program.

Useful to transform a clear program (specification) into an efficient
program (implementation).

We want to mechanise such transformations on Haskell programs:

less time-consuming and error prone than pen-and-paper reasoning
no need to modify the source file

Several existing transformation systems for Haskell programs, e.g.
HaRe, HERA, PATH, Ultra

But they all operate on Haskell source code (or some variant).

Haskell source code? Haskell 98? Haskell 2010?
GHC-extended Haskell? Which extensions?

Alternative: GHC Core, GHC’s intermediate language

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

GHC Core

data ModGuts = ModGuts { :: [CoreBind], ...}
data CoreBind = NonRec Id CoreExpr

| Rec [(Id ,CoreExpr)]

data CoreExpr = Var Id
| Lit Literal
| App CoreExpr CoreExpr
| Lam Id CoreExpr
| Let CoreBind CoreExpr
| Case CoreExpr Id Type [CoreAlt]
| Cast CoreExpr Coercion
| Tick (Tickish Id) CoreExpr
| Type Type
| Coercion Coercion

type CoreAlt = (AltCon, [Id],CoreExpr)

data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:

The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

What is HERMIT?

Haskell Equational Reasoning
Model-to-Implementation Tunnel

A scriptable toolkit for interactive
transformation of GHC Core
programs.

Under development at the
University of Kansas, Lawrence.

Not to be confused with:
The Kansas Hermit (1826–1909),
also from Lawrence.

(image from http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

http://www.angelfire.com/ks/larrycarter/LC/OldGuardCameron.html

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

The HERMIT Project

Haskell
Compiler

HERMIT
Stack

GUI
Applications

Glasgow
Haskell

Compiler

Haskell
Module

Haskell
Binary

HERMIT
Kernel

KURE

GHC Core
Support

Rewrite
Primitives

Command
Support

HERMIT

HERMIT
Shell

HERMIT
Server

Your
HERMIT

Application

HERMIT
Applications

HERMIT
GUI

Power User

GHC
Plugin

API
RESTful

API

HERMIT
API

Android
HERMIT

Application

Browser
based

HERMIT
Application

Users

HTTP +
Comet

Future Work

Scotty

Warp

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Downloading and Running HERMIT

HERMIT requires GHC 7.4.

1 cabal update

2 cabal install hermit

3 hermit Main.hs

The hermit command just invokes GHC with some default flags:

ghc Main.hs -fforce-recomp -O2 -dcore-lint

-fsimple-list-literals -fplugin=HERMIT

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

fib :: Int → Int
fib n = if n < 2

then 1
else fib (n− 1) + fib (n− 2)

fib :: Int → Int
fib n = if n < 2 then 1

else (if (n− 1) < 2 then 1
else fib (n− 1− 1) + fib (n− 1− 2)

)
+
(if (n− 2) < 2 then 1

else fib (n− 2− 1) + fib (n− 2− 2)
)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Demonstration: Unrolling Fibonacci

As a first demonstration, let’s transform the fib function by unrolling the
recursive calls once.

fib :: Int → Int
fib n = if n < 2

then 1
else fib (n− 1) + fib (n− 2)

fib :: Int → Int
fib n = if n < 2 then 1

else (if (n− 1) < 2 then 1
else fib (n− 1− 1) + fib (n− 1− 2)

)
+
(if (n− 2) < 2 then 1

else fib (n− 2− 1) + fib (n− 2− 2)
)

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

HERMIT Commands

Core-specific rewrites, e.g.
beta-reduce
eta-expand ’x
case-split ’x
inline

Strategic traversal combinators (from KURE), e.g.
any-td r
repeat r
innermost r

Navigation, e.g.
up, down, left, right, top
consider ’foo
0, 1, 2, . . .

Version control, e.g.
log
back
step
save “myscript.hss”

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations

HERMIT can be used to test/debug RULES

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

GHC RULES

GHC language feature allowing custom optimisations

e.g.

{-# RULES "map/map" ∀ f g xs . map f (map g xs) = map (f ◦ g) xs #-}

HERMIT adds any RULES to its available transformations

allows the HERMIT user to introduce new transformations
HERMIT can be used to test/debug RULES

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

Demonstration: Fast Reverse

Consider transforming the slow (quadratic) version of reverse to the fast
(linear) version:

rev :: [a]→ [a]
rev [] = []
rev (x : xs) = rev xs ++ [x]

rev :: [a]→ [a]
rev as = let work :: [a]→ [a]→ [a]

work [] ys = ys
work (x : xs) ys = work xs (x : ys)

in
work as []

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

Motivation GHC Core HERMIT Demo: fib Commands RULES Demo: rev Summary

HERMIT Summary

A GHC plugin for interactive transformation of GHC Core programs

Still early in development

Next step: an equational reasoning framework that only allows
correctness preserving transformations

See also “The HERMIT in the Tree” (submitted to IFL ’12)
— describes our experiences mechanising known transformations

Feedback and feature requests welcome!

Farmer, Gill, Komp & Sculthorpe The HERMIT in the Machine

	Motivation
	GHC Core
	HERMIT
	Demo: fib
	Commands
	RULES
	Demo: rev
	Summary

