
Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Reusable Components for
Programming Language Design

Neil Sculthorpe

Department of Computing and Technology
Nottingham Trent University
neil.sculthorpe@ntu.ac.uk

Nottingham, England
5th October 2016

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Defining Programming Languages

Who decides the meaning of a programming language?

The language creator
A standards committee
A compiler writer

How do they convey that meaning to others?

Tutorials/examples
A reference implementation
A reference manual
A mathematical definition

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Defining Programming Languages

Who decides the meaning of a programming language?

The language creator

A standards committee
A compiler writer

How do they convey that meaning to others?

Tutorials/examples
A reference implementation
A reference manual
A mathematical definition

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Defining Programming Languages

Who decides the meaning of a programming language?

The language creator
A standards committee

A compiler writer

How do they convey that meaning to others?

Tutorials/examples
A reference implementation
A reference manual
A mathematical definition

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Defining Programming Languages

Who decides the meaning of a programming language?

The language creator
A standards committee
A compiler writer

How do they convey that meaning to others?

Tutorials/examples
A reference implementation
A reference manual
A mathematical definition

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Defining Programming Languages

Who decides the meaning of a programming language?

The language creator
A standards committee
A compiler writer

How do they convey that meaning to others?

Tutorials/examples

A reference implementation
A reference manual
A mathematical definition

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Defining Programming Languages

Who decides the meaning of a programming language?

The language creator
A standards committee
A compiler writer

How do they convey that meaning to others?

Tutorials/examples
A reference implementation

A reference manual
A mathematical definition

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Defining Programming Languages

Who decides the meaning of a programming language?

The language creator
A standards committee
A compiler writer

How do they convey that meaning to others?

Tutorials/examples
A reference implementation
A reference manual

A mathematical definition

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Defining Programming Languages

Who decides the meaning of a programming language?

The language creator
A standards committee
A compiler writer

How do they convey that meaning to others?

Tutorials/examples
A reference implementation
A reference manual
A mathematical definition

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Tutorials/Examples

Good for explaining the basic idea

E.g. after a tutorial explains

i n t i=10, j=3, k=0;

k = -i;

k = i-j;

k = --i;

you’ll understand most uses of ’-’

But what about these?

k = -INT_MIN;

k = -i---j--;

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Tutorials/Examples

Good for explaining the basic idea

E.g. after a tutorial explains

i n t i=10, j=3, k=0;

k = -i;

k = i-j;

k = --i;

you’ll understand most uses of ’-’

But what about these?

k = -INT_MIN;

k = -i---j--;

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Tutorials/Examples

Good for explaining the basic idea

E.g. after a tutorial explains

i n t i=10, j=3, k=0;

k = -i;

k = i-j;

k = --i;

you’ll understand most uses of ’-’

But what about these?

k = -INT_MIN;

k = -i---j--;

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Implementations

Easy to find out what one particular bit of code does

Good for testing against

Poor for understanding language features in full generality

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Reference Manuals

Typically written in natural language

Good for reading by humans

Not executable, cannot be mechanically checked/tested

Can contain omissions, contradictions, ambiguities

Often verbose

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Reference Manuals

Example: C] conditionals1 Chapter 1 Introduction

8.7.1 The if statement

The if statement selects a statement for execution based on the value of a boolean expression.

if-statement:
if (boolean-expression) embedded-statement
if (boolean-expression) embedded-statement else embedded-statement

An else part is associated with the lexically nearest preceding if that is allowed by the syntax. Thus, an if
statement of the form

if (x) if (y) F(); else G();

is equivalent to

if (x) {
if (y) {

F();
}
else {

G();
}

}

An if statement is executed as follows:

 The boolean-expression (§7.19) is evaluated.

 If the boolean expression yields true, control is transferred to the first embedded statement. When and if

control reaches the end point of that statement, control is transferred to the end point of the if statement.

 If the boolean expression yields false and if an else part is present, control is transferred to the second

embedded statement. When and if control reaches the end point of that statement, control is transferred to

the end point of the if statement.

 If the boolean expression yields false and if an else part is not present, control is transferred to the end

point of the if statement.

The first embedded statement of an if statement is reachable if the if statement is reachable and the boolean

expression does not have the constant value false.

The second embedded statement of an if statement, if present, is reachable if the if statement is reachable and the

boolean expression does not have the constant value true.

The end point of an if statement is reachable if the end point of at least one of its embedded statements is

reachable. In addition, the end point of an if statement with no else part is reachable if the if statement is
reachable and the boolean expression does not have the constant value true.

Copyright Ó Microsoft Corporation 1999-2007. All Rights Reserved. 271

1C] Language Specification, v3.03, Microsoft, 2007.
Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Formal Mathematics

Precise, concise, unambiguous

Can be executable

Commonly used to define syntax (e.g. context-free grammars)

Rarely used to define semantics (for major languages)

Formal semantics often considered too much effort to specify/maintain

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Formal Mathematics

Precise, concise, unambiguous

Can be executable

Commonly used to define syntax (e.g. context-free grammars)

Rarely used to define semantics (for major languages)

Formal semantics often considered too much effort to specify/maintain

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Formal Mathematics

Precise, concise, unambiguous

Can be executable

Commonly used to define syntax (e.g. context-free grammars)

Rarely used to define semantics (for major languages)

Formal semantics often considered too much effort to specify/maintain

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Formal Mathematics

Example: C] switches2 Appendix C References

switch-statement:

switch (expression) switch-block

switch-block:

{ switch-sectionsopt }

switch-sections:

switch-section

switch-sections switch-section

switch-section:

switch-labels statement-list

switch-labels:

switch-label

switch-labels switch-label

switch-label:

case constant-expression :

default :

Copyright Ó Microsoft Corporation 1999-2007. All Rights Reserved. 487

2C] Language Specification, v3.03, Microsoft, 2007.
Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Formal Mathematics

Precise, concise, unambiguous

Can be executable

Commonly used to define syntax (e.g. context-free grammars)

Rarely used to define semantics (for major languages)

Formal semantics often considered too much effort to specify/maintain

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Formal Mathematics

Precise, concise, unambiguous

Can be executable

Commonly used to define syntax (e.g. context-free grammars)

Rarely used to define semantics (for major languages)

Formal semantics often considered too much effort to specify/maintain

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Formal Mathematics

Precise, concise, unambiguous

Can be executable

Commonly used to define syntax (e.g. context-free grammars)

Rarely used to define semantics (for major languages)

Formal semantics often considered too much effort to specify/maintain

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Component-based Semantics

Aim: Making formal semantics easier to specify and update

Approach: A component-based framework of fundamental constructs

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Component-based Semantics

Aim: Making formal semantics easier to specify and update

Approach: A component-based framework of fundamental constructs

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Component-based Semantics

HaskellC] JavaC PythonML

Frameworks for Formal Semantics

. . .

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Component-based Semantics

HaskellC] JavaC PythonML

Fundamental Constructs

. . .

Frameworks for Formal Semantics

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Component-based Semantics

HaskellC] JavaC PythonML

Fundamental Constructs

. . .

Frameworks for Formal Semantics

Translation
(denotational semantics)

Specification
(static and dynamic semantics)

MSOS

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Component-based Semantics

HaskellC] JavaC PythonML

Fundamental Constructs

. . .

Frameworks for Formal Semantics

Translation
(denotational semantics)

Specification
(static and dynamic semantics)

???

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Fundamental Constructs (funcons)

Each funcon expresses a programming concept, e.g.

variable assignment
function application
command sequencing
declaration scoping
conditional branching

Funcons are similar to existing programming constructs to facilitate
translation . . .

. . . but general enough to be reusable for many languages.

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

An Open Collection of Reusable Funcons

. . . allocate apply assign bind booleans

call-cc catch closure curry deallocate

identifiers if-then-else is-equal integers lambda

lists pattern-match not null pointers print

records references scope sequential throw

types variables variants vectors while . . .

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

An Open Collection of Reusable Funcons

The funcon framework is an open collection

Each funcon:

is modular
has fixed syntax and semantics

New funcons can be added, but existing funcons cannot be modified

If a programming language changes, the translation to funcons changes

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Funcon Formal Semantics

Our framework: Modular Structural Operational Semantics

Based on relations specified by inference rules

E.g. specifying if-then-else:

Type Checking:
B : booleans X : T Y : T

if-then-else(B,X ,Y) : T

Operational Semantics:

B −→ B ′

if-then-else(B,X ,Y) −→ if-then-else(B ′,X ,Y)

if-then-else(true,X ,Y) −→ X

if-then-else(false,X ,Y) −→ Y

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Funcon Formal Semantics

Our framework: Modular Structural Operational Semantics

Based on relations specified by inference rules

E.g. specifying if-then-else:

Type Checking:
B : booleans X : T Y : T

if-then-else(B,X ,Y) : T

Operational Semantics:

B −→ B ′

if-then-else(B,X ,Y) −→ if-then-else(B ′,X ,Y)

if-then-else(true,X ,Y) −→ X

if-then-else(false,X ,Y) −→ Y

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Example Translation (1): ML-like conditional expressions

Source language syntax:

expr ::= if expr then expr else expr

| . . .

Translation to funcons:

evalJif E1 then E2 else E3K =

if-then-else(evalJE1K, evalJE2K, evalJE3K)

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Example Translation (1): ML-like conditional expressions

Source language syntax:

expr ::= if expr then expr else expr

| . . .

Translation to funcons:

evalJif E1 then E2 else E3K =

if-then-else(evalJE1K, evalJE2K, evalJE3K)

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Example Translation (2): C-like conditional statements

Source language syntax:

stmt ::= if (expr) stmt else stmt

| . . .

Translation to funcons:

execJif (E) S1 else S2K =

if-then-else(not(is-equal(evalJEK, 0)), execJS1K, execJS2K)

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Example Translation (2): C-like conditional statements

Source language syntax:

stmt ::= if (expr) stmt else stmt

| . . .

Translation to funcons:

execJif (E) S1 else S2K =

if-then-else(not(is-equal(evalJEK, 0)), execJS1K, execJS2K)

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Case Studies

IMP [vSM16]

SIMPLE (under review)

Caml Light [CMST15]

C] (work in progress)

Control Operators [STM16]

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Tool Support

IDE as an Eclipse Plugin (using Spoofax)

Translations from object languages to funcons are executable
(using term rewriting)

Funcon specifications compiled to produce a reference interpreter
(using Haskell)

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Summary

Funcons are reusable semantic components

Translation to funcons is simple and direct

The funcon framework is open and modular

Goal: provide a practical framework for formally specifying real-world
programming languages

Neil Sculthorpe Reusable Components for Programming Language Design

Defining Languages Reusable Components Examples Case Studies Tool Support Summary Publications

Publications

Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo Torrini.

Reusable components of semantic specifications.

In Transactions on Aspect-Oriented Software Development XII, volume 8989 of
Lecture Notes in Computer Science, pages 132–179. Springer, 2015.

Peter D. Mosses and Ferdinand Vesely.

FunKons: Component-based semantics in K.

In International Workshop on Rewriting Logic and its Applications, volume 8663 of
Lecture Notes in Computer Science, pages 213–229. Springer, 2014.

Neil Sculthorpe, Paolo Torrini, and Peter D. Mosses.

A modular structural operational semantics for delimited continuations.

In Workshop on Continuations, volume 212 of Electronic Proceedings in Theoretical
Computer Science, pages 63–80. Open Publishing Association, 2016.

L. Thomas van Binsbergen, Neil Sculthorpe, and Peter D. Mosses.

Tool support for component-based semantics.

In Companion Proceedings of the 15th International Conference on Modularity, pages
8–11. ACM, 2016.

Neil Sculthorpe Reusable Components for Programming Language Design

	Defining Languages
	Reusable Components
	Examples
	Case Studies
	Tool Support
	Summary
	Publications

