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The Challenge

“While the use of labels gives MSOS
the ability to modularly deal with some
forms of control, such as abrupt termi-
nation, at our knowledge it still cannot
support the definition of arbitrarily
complex control-intensive features such
call/cc.”

Yes it can!
(And control/prompt, and shift/reset.)
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K is an executable semantic framework in which programming languages, calculi, as well

as type systems or formal analysis tools can be defined, making use of configurations, com-

putations and rules. Configurations organize the system/program state in units called cells,

which are labeled and can be nested. Computations carry “computational meaning” as spe-

cialnested list structures sequentializingcomputational tasks, suchas fragmentsofprogram;

in particular, computations extend the original language or calculus syntax. K (rewrite) rules

generalize conventional rewrite rules by making explicit which parts of the term they read,

write, or do not care about. This distinction makes K a suitable framework for defining truly

concurrent languages or calculi, even in the presence of sharing. Since computations can

be handled like any other terms in a rewriting environment, that is, they can be matched,

moved from one place to another in the original term, modified, or even deleted, K is partic-

ularly suitable for defining control-intensive language features such as abrupt termination,

exceptions, or call/cc.

This paper gives an overview of the K framework: what it is, how it can be used, and

where it has been used so far. It also proposes and discusses the K definition of Challenge,

a programming language that aims to challenge and expose the limitations of existing se-

mantic frameworks.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

This paper is a gentle introduction to K, a rewriting-based semantic definitional framework. K was introduced by the first

author in the lecture notes of a programming language course at the University of Illinois at Urbana-Champaign (UIUC) in

Fall 2003 [34], as a means to define executable concurrent languages in rewriting logic using Maude [7]. Since 2003, K has

been used continuously in teaching programming languages at UIUC, in seminars in Spain and Romania, as well as in several

research initiatives. A more formal description of K can be found in [35,36].

The introduction and development of K was largely motivated by the observation that after more than 40 years of

systematic research in programming language semantics, the following important (multi-)question remains largely open to

the working programming language designer, but also to the entire research community:

Is there any language definitional framework which, at the same time,

1. Gives a unified approach to define not only languages but also language-related abstractions, such as type checkers,

type inferencers, abstract interpreters, safety policy or domain-specific checkers, etc.? The current state-of-the art is

that language designers use different approaches or styles to define different aspects of a language, sometimes even

to define different components of the same aspect.

2. Can define arbitrarily complex language features, including, obviously, all those found in existing languages, capturing

also their intended computational granularity? For example, features like call-with-current-continuation and true

concurrency are hard or impossible to define in many existing frameworks.
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1567-8326/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2010.03.012

Neil Sculthorpe, Paolo Torrini & Peter D. Mosses A Modular SOS for Delimited Continuations



The Challenge MSOS Control Operators Conclusion Extra Slides

The Challenge

“While the use of labels gives MSOS
the ability to modularly deal with some
forms of control, such as abrupt termi-
nation, at our knowledge it still cannot
support the definition of arbitrarily
complex control-intensive features such
call/cc.”

Yes it can!

(And control/prompt, and shift/reset.)

The Journal of Logic and Algebraic Programming 79 (2010) 397–434

Contents lists available at ScienceDirect

The Journal of Logic and Algebraic Programming

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j l a p

An overview of the K semantic framework

Grigore Ro ,su
∗, Traian Florin ,Serbănu ,tă
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Overview and motivate MSOS

MSOS specifications of control and prompt

Specifications of shift and call/cc in terms of control and prompt
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Modular Structural Operational Semantics (MSOS)

A modular variant of Plotkin’s SOS framework. ρ2 ` Y
s2−→ Y ′

ρ1 ` X
s1−→ X ′

Benefit: rules need not mention unused auxiliary entities.

We use a flavour of MSOS called Implicitly Modular SOS (I-MSOS):

unmentioned entities are propagated between premise and conclusion;
when there is no premise, unmentioned signals have a default value.

This talk will use small-step transition rules.

Neil Sculthorpe, Paolo Torrini & Peter D. Mosses A Modular SOS for Delimited Continuations
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I-MSOS Specification of Lambda Calculus

E ::= V
| bv(I )
| lambda(I ,E )
| apply(E ,E )
| . . .

V ::= closure(ρ, I ,E )
| . . .

ρ(I ) = V

env ρ ` bv(I )→ V

env ρ ` lambda(I ,E )→ closure(ρ, I ,E )

env ρ ` E1 → E ′
1

env ρ ` apply(E1,E2)→ apply(E ′
1,E2)

val(V ) env ρ ` E → E ′

env ρ ` apply(V ,E )→ apply(V ,E ′)

val(V ) env ({I 7→ V }/ρ) ` E → E ′

env ` apply(closure(ρ, I ,E ),V )→ apply(closure(ρ, I ,E ′),V )

val(V1) val(V2)

env ρ ` apply(closure(ρ, I ,V1),V2)→ V1

Neil Sculthorpe, Paolo Torrini & Peter D. Mosses A Modular SOS for Delimited Continuations
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I-MSOS Specification of Exception Handling

E ,H ::= throw(E )
| catch(E ,H)
| stuck
| . . .

E
exc X−−−→ E ′

throw(E )
exc X−−−→ throw(E ′)

val(V )

throw(V )
exc some(V )−−−−−−−→ stuck

E
exc none−−−−−→ E ′

catch(E ,H)
exc none−−−−−→ catch(E ′,H)

E
exc some(V )−−−−−−−→ E ′

catch(E ,H)
exc none−−−−−→ apply(H,V )

val(V )

catch(V ,H)
exc none−−−−−→ V
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SOS Specification of Lambda Calculus with Exceptions

ρ(I ) = V

env ρ ` bv(I )
exc none−−−−−→ V

env ρ ` lambda(I ,E)
exc none−−−−−→ closure(ρ, I ,E)

env ρ ` E1
exc X−−−→ E ′

1

env ρ ` apply(E1,E2)
exc X−−−→ apply(E ′

1,E2)

val(V ) env ρ ` E
exc X−−−→ E ′

env ρ ` apply(V ,E)
exc X−−−→ apply(V ,E ′)

val(V ) env ({I 7→ V }/ρ) ` E
exc X−−−→ E ′

env ` apply(closure(ρ, I ,E),V )
exc X−−−→

apply(closure(ρ, I ,E ′),V )

val(V1) val(V2)

env ρ ` apply(closure(ρ, I ,V1),V2)
exc none−−−−−→ V1

env ρ ` E
exc X−−−→ E ′

env ρ ` throw(E)
exc X−−−→ throw(E ′)

val(V )

env ρ ` throw(V )
exc some(V )−−−−−−−→ stuck

env ρ ` E
exc none−−−−−→ E ′

env ρ ` catch(E ,H)
exc none−−−−−→ catch(E ′,H)

env ρ ` E
exc some(V )−−−−−−−→ E ′
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val(V )
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I-MSOS Specification of Lambda Calculus with Exceptions
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Formulating control and prompt

We formulate control as a unary operator that takes a higher-order
function as its argument:

1 + prompt(2 ∗ control(λk . k(k 7)))  29

In our notation:

plus(1,prompt(times(2, control(lambda(K , apply(bv(K ), apply(bv(K ), 7)))))))

E ::= control(E )
| prompt(E )
| times(E ,E )
| plus(E ,E )
| . . .

V ::= integers
| . . .

Neil Sculthorpe, Paolo Torrini & Peter D. Mosses A Modular SOS for Delimited Continuations
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Specifying control and prompt

Key ideas:

We don’t maintain an explicit representation of the current continuation.

We construct the continuation from the program term when needed.

Use signals to communicate between control operators and delimiters:

control emits a signal when executed;
prompt catches that signal and handles it.

Neil Sculthorpe, Paolo Torrini & Peter D. Mosses A Modular SOS for Delimited Continuations
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I-MSOS Specification of control and prompt

E ::= control(E )
| prompt(E )
| . . .

E → E ′

control(E )→ control(E ′)

val(F ) fresh-id(I )

control(F )
control some(F ,I )−−−−−−−−−−→ bv(I )

E
control none−−−−−−−→ E ′

prompt(E )
control none−−−−−−−→ prompt(E ′)

E
control some(F ,I )−−−−−−−−−−→ E ′ K = lambda(I ,E ′)

prompt(E )
control none−−−−−−−→ prompt(apply(F ,K ))

val(V )

prompt(V )→ V
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I-MSOS Specification of control and prompt

E ::= control(E )
| prompt(E )
| . . .

E → E ′

control(E )→ control(E ′)

val(F ) fresh-id(I )

control(F )
control some(F ,I )−−−−−−−−−−→ meta-bv(I )

E
control none−−−−−−−→ E ′

prompt(E )
control none−−−−−−−→ prompt(E ′)

E
control some(F ,I )−−−−−−−−−−→ E ′ K = lambda(I ,meta-let-in(I ,bv(I ),E ′))

prompt(E )
control none−−−−−−−→ prompt(apply(F ,K ))

val(V )

prompt(V )→ V
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The Meta-environment

An auxiliary environment that doesn’t interact with closures.

Used here to achieve the same effect as substitution.

E ::= meta-bv(I )
| meta-let-in(I ,E ,E )
| . . .

ρ(I ) = V

meta-env ρ ` meta-bv(I )→ V

meta-env ρ ` E1 → E ′
1

meta-env ρ ` meta-let-in(I ,E1,E2)→ meta-let-in(I ,E ′
1,E2)

val(V ) meta-env ({I 7→ V }/ρ) ` E → E ′

meta-env ρ ` meta-let-in(I ,V ,E )→ meta-let-in(I ,V ,E ′)

val(V1) val(V2)

meta-env ρ ` meta-let-in(I ,V1,V2)→ V2
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Conclusion

MSOS allows programming constructs to be specified independently.

Contrary to popular belief, specifying control operators in MSOS is
fairly straightforward.

In the paper we have also specified call/cc, shift and reset.

Specifications tested on 70 test programs (including Mondo Bizarro!),
using our I-MSOS interpreter.

Test suite available online: http://www.plancomps.org/woc2016
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I-MSOS Specification of shift and reset

E ::= shift(E )
| reset(E )
| . . .

reset(E )→ prompt(E )

E → E ′

shift(E )→ shift(E ′)

val(F ) fresh-id(K ) fresh-id(X )

shift(F )→
control(lambda(K , apply(F , lambda(X , reset(apply(bv(K ),bv(X )))))))

i.e. shift(f ) = control(λk . f (λx . reset(k x)))
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I-MSOS Specification of abort and call/cc

E ::= abort(E)
| callcc(E)
| . . .

E → E ′

abort(E) → abort(E ′)

val(V ) fresh-id(I )

abort(V ) → control(lambda(I ,V ))

E → E ′

callcc(E) → callcc(E ′)

val(F ) fresh-id(K) fresh-id(X )

callcc(F ) →
control(lambda(K , apply(bv(K), apply(F , lambda(X , abort(apply(bv(K), bv(X ))))))))

i.e. callcc(f ) = control(λk. k (f (λx . abort(k x))))

N.B. To simulate an undelimited call/cc, the program should contain
only a single top-level delimiter.
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Eugene Kohlbecker’s Mondo Bizarro

let mondo bizarro () = let k = callcc(function c → c)
in print 1 ;

callcc(k) ;
print 2 ;
callcc(k) ;
print 3 ;;

prompt(mondo bizarro()) ;;

Output: [ 1 ; 1 ; 2 ; 1 ; 3 ]

Neil Sculthorpe, Paolo Torrini & Peter D. Mosses A Modular SOS for Delimited Continuations


	The Challenge
	MSOS
	Control Operators
	Conclusion
	Extra Slides

