
Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

An Introduction to
Functional Reactive Programming

Neil Sculthorpe

Functional Programming Group

Information and Telecommunication Technology Center

University of Kansas

neil@ittc.ku.edu

Lawrence, Kansas
30th March 2012

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Reactive Programming

Reactive Program: continually interacts with its environment in a
timely manner.

Examples: video games, mp3 players, robot controllers, aeroplane
control systems . . .

Contrast with:

Interactive Programs, e.g. accessing a database
Transformational Programs, e.g. a compiler

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Functional Reactive Programming (FRP)

FRP languages are domain-specific languages (the domain being
reactive programming)

Key characteristic: inherent notion of time

Usually embedded in a host language (often Haskell)

Also useful for modelling and simulation

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

What is Time?

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

Two choices:

continuous time: Time ≈ {t > 0 | t ∈ R}
discrete time: Time ≈ N

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

Two choices:

continuous time: Time ≈ {t > 0 | t ∈ R}
discrete time: Time ≈ N

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

Two choices:

continuous time: Time ≈ {t > 0 | t ∈ R}
discrete time: Time ≈ N

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

. . . while automating the discretisation necessary for
implementation.

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

There are also instantaneous occurrences called events.

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

There are also instantaneous occurrences called events.

In a discrete-time setting, events can be embedded within signals:

Event a = Signal (Maybe a)

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

There are also instantaneous occurrences called events.

In a discrete-time setting, events can be embedded within signals:

Event a = Signal (Maybe a)

In a continuous-time setting, they require a separate abstraction:

Event a ≈ [(Time, a)]

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.

Some go further and only provide functions on signals as a
first-class abstraction.

These are called signal functions:

SF a b ≈ Signal a → Signal b

The abstraction prevents many “bad” signal functions from being
defined.

E.g. causality can be enforced (the present cannot depend on the
future).

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Yampa: An FRP Language

A DSL embedded in Haskell

No signals, only signal functions

Pretends to have continuous time

Has been used for a variety of applications: video games, sound
synthesis, robot simulators, GUIs, virtual reality, visual tracking,
animal monitoring. . .

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Some Yampa Primitives

Example Primitives

constant :: b → SF a b

integral :: Num a ⇒ SF a a

delay :: Time → a → SF a a

edge :: SF Bool (Event ())

tag :: Event a → b → Event b

switch :: SF a (b,Event e) → (e → SF a b) → SF a b

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

The Arrow Framework

Arrow Classes

class Category (a :: ∗ → ∗ → ∗) where
id :: a b b

(◦) :: a c d → a b c → a c d

class Category a ⇒ Arrow (a :: ∗ → ∗ → ∗) where
arr :: (b → c) → a b c

first :: a b c → a (b, d) (c , d)

class Arrow a ⇒ ArrowLoop (a :: ∗ → ∗ → ∗) where
loop :: a (b, d) (c , d) → a b c

Yampa Signal Functions are Arrows

instance Category SF where . . .

instance Arrow SF where . . .

instance ArrowLoop SF where . . .

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Signal Functions Combinators

>>>

sf1 sf2

&&&

sf1

sf2

returnA

first

sf

second

sf

loop

sf

arr

f

arr :: (a → b) → SF a b

(≫) :: SF a b → SF b c → SF a c

returnA :: SF a a

first :: SF a c → SF (a, b) (c , b)
second :: SF b c → SF (a, b) (a, c)
(&&&) :: SF a b → SF a c → SF a (b, c)
loop :: SF (a, c) (b, c) → SF a b

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Examples

Example Signal Functions

localTime :: SF a Time

localTime = constant 1 ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Examples

Example Signal Functions

localTime :: SF a Time

localTime = constant 1 ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

See accompanying code for bouncing-ball example. . .

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Yampa Implementation

The SF data type (simplified)

data SF a b ≈ SF (DTime → a → (SF a b, b))

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Yampa Implementation

The SF data type (simplified)

data SF a b ≈ SF (DTime → a → (SF a b, b))

An alternative implementation

data SF a b ≈ SF (DTime → s → a → (s, b))

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Push vs. Pull

FRP languages usually take one of two implementation strategies:

Pull-driven implementations update at every time step (good for
systems with continuously changing signals).
Push-driven implementations only update when an event occurs,
and only the parts of the program that depend on that event (good
for systems with signals that change at discrete points in time).

In practice, FRP implementations contain a lot of optimisations to
avoid unnecessary computation.

But efficient implementation of FRP remains an open problem.

Neil Sculthorpe An Introduction to Functional Reactive Programming



Reactive Programming Time Signals Yampa Arrows Examples Implementation Summary

Summary

FRP languages are domain-specific languages for reactive
programming.

Their key characteristic is an implicit notion of time.

If you want to experiment with Yampa, I’d recommend Henrik
Nilsson’s recent mini-course:
http://www.cs.nott.ac.uk/~nhn/ITU-FRP2010/

Neil Sculthorpe An Introduction to Functional Reactive Programming

http://www.cs.nott.ac.uk/~nhn/ITU-FRP2010/

	Reactive Programming
	Time
	Signals
	Yampa
	Arrows
	Examples
	Implementation
	Summary

