
Reactive Programming Time Signals Yampa Examples Implementation Summary

An Introduction to
Functional Reactive Programming

Neil Sculthorpe

Functional Programming Group

Information and Telecommunication Technology Center

University of Kansas

neil@ittc.ku.edu

Lawrence, Kansas
19th April 2012

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Reactive Programming

Reactive Program: continually interacts with its environment in a
timely manner.

Examples: video games, mp3 players, robot controllers, aeroplane
control systems . . .

Contrast with:

Transformational Programs, e.g. a compiler
Interactive Programs, e.g. accessing a database

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

What type of program?

Greeting

greeting = do putStrLn "What is your first name?"

n1 ← getLine

putStrLn "And what is your family name?"

n2 ← getLine

putStrLn ("Hello " ++ n1 ++ " " ++ n2)

Insertion Sort

isort :: Ord a ⇒ [a] → [a]
isort [] = []
isort (x : xs) = insert x (isort xs)

insert :: Ord a ⇒ a → [a] → [a]
insert x [] = [x]
insert x (a : as) | x > a = a : insert x as

| x 6 a = x : a : as

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

What type of program?

Greeting Interactive

greeting = do putStrLn "What is your first name?"

n1 ← getLine

putStrLn "And what is your family name?"

n2 ← getLine

putStrLn ("Hello " ++ n1 ++ " " ++ n2)

Insertion Sort Transformational

isort :: Ord a ⇒ [a] → [a]
isort [] = []
isort (x : xs) = insert x (isort xs)

insert :: Ord a ⇒ a → [a] → [a]
insert x [] = [x]
insert x (a : as) | x > a = a : insert x as

| x 6 a = x : a : as

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Functional Reactive Programming (FRP)

FRP languages are domain-specific languages (the domain being
reactive programming)

Key characteristic: inherent notion of time

Usually embedded in a host language (often Haskell)

Also useful for modelling and simulation

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

What is Time?

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

. . . while automating the discretisation necessary for
implementation.

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

There are also instantaneous occurrences called events.

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

There are also instantaneous occurrences called events.

One way to represent events is as Maybe types within signals:

Signal (Maybe a)

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.

This has several advantages, e.g.

enforcing causality
optimisation opportunities

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.

This has several advantages, e.g.

enforcing causality
optimisation opportunities

Some languages go further and only provide functions on signals as
a first-class abstraction.

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.

This has several advantages, e.g.

enforcing causality
optimisation opportunities

Some languages go further and only provide functions on signals as
a first-class abstraction.

These are called signal functions:

SF a b ≈ Signal a → Signal b

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Yampa: An FRP Language

A DSL embedded in Haskell

No signals, only signal functions

Pretends to have continuous time

Has been used for a variety of applications: video games, sound
synthesis, robot simulators, GUIs, virtual reality, visual tracking,
animal monitoring. . .

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Yampa Routing Combinators

arr

f

identity

>>>

sf2sf1

&&&

sf1

sf2

parB

sf1

sf2

sfn

loop

sf

arr :: (a → b) → SF a b

identity :: SF a a

(≫) :: SF a b → SF b c → SF a c

(&&&) :: SF a b → SF a c → SF a (b, c)

parB :: [SF a b] → SF a [b]

loop :: SF (a, c) (b, c) → SF a b

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Some Yampa Primitives

Events

data Event a = NoEvent | Event a

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Some Yampa Primitives

Events

data Event a = NoEvent | Event a

tag :: Event a → b → Event b

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Some Yampa Primitives

Events

data Event a = NoEvent | Event a

tag :: Event a → b → Event b

Time-Dependent Primitives

integral :: Num a ⇒ SF a a

delay :: Time → a → SF a a

edge :: SF Bool (Event ())

switch :: SF a (b,Event e) → (e → SF a b) → SF a b

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Examples

Example Yampa Code

localTime :: SF a Time

localTime = arr (const 1) ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

iIntegral :: Num x ⇒ x → SF x x

iIntegral x = integral ≫ arr (+x)

switchWhen :: SF a b → SF b (Event e) → (e → SF a b) → SF a b

switchWhen sf sfe = switch (sf ≫ (identity &&& sfe))

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in h (x , y , b)

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in h (x , y , b)

Monadic Code (f :: a → m x)

λ (a, b) → do

x ← f a

y ← g (b, x)
h (x , y , b)

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in h (x , y , b)

Arrow Code (f :: SF a x)

proc (a, b) → do

x ← f −≺ a

y ← g −≺ (b, x)
h −≺ (x , y , b)

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Bouncing Balls

See accompanying code. . .

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Yampa Implementation

The SF data type (simplified)

data SF a b ≈ SF (DTime → a → (SF a b, b))

(DTime is the amount of time passed since the previous sample.)

Neil Sculthorpe An Introduction to Functional Reactive Programming

Reactive Programming Time Signals Yampa Examples Implementation Summary

Summary

FRP languages are domain-specific languages for reactive
programming.

Their key characteristic is an implicit notion of time.

If you want to learn more about Yampa, I’d recommend Henrik
Nilsson’s recent mini-course:
http://www.cs.nott.ac.uk/~nhn/ITU-FRP2010/

Neil Sculthorpe An Introduction to Functional Reactive Programming

http://www.cs.nott.ac.uk/~nhn/ITU-FRP2010/

	Reactive Programming
	Time
	Signals
	Yampa
	Examples
	Implementation
	Summary

