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Reactive Programming

Reactive Program: continually interacts with its environment in a
timely manner.

Examples: video games, mp3 players, robot controllers, aeroplane
control systems . . .

Contrast with:

Transformational Programs, e.g. a compiler
Interactive Programs, e.g. accessing a database
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What type of program?

Greeting

greeting = do putStrLn "What is your first name?"

n1 ← getLine

putStrLn "And what is your family name?"

n2 ← getLine

putStrLn ("Hello " ++ n1 ++ " " ++ n2)

Insertion Sort

isort :: Ord a ⇒ [a ] → [a ]
isort [ ] = [ ]
isort (x : xs) = insert x (isort xs)

insert :: Ord a ⇒ a → [a ] → [a ]
insert x [ ] = [x ]
insert x (a : as) | x > a = a : insert x as

| x 6 a = x : a : as
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What type of program?

Greeting Interactive

greeting = do putStrLn "What is your first name?"

n1 ← getLine

putStrLn "And what is your family name?"

n2 ← getLine

putStrLn ("Hello " ++ n1 ++ " " ++ n2)

Insertion Sort Transformational

isort :: Ord a ⇒ [a ] → [a ]
isort [ ] = [ ]
isort (x : xs) = insert x (isort xs)

insert :: Ord a ⇒ a → [a ] → [a ]
insert x [ ] = [x ]
insert x (a : as) | x > a = a : insert x as

| x 6 a = x : a : as
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Functional Reactive Programming (FRP)

FRP languages are domain-specific languages (the domain being
reactive programming)

Key characteristic: inherent notion of time

Usually embedded in a host language (often Haskell)

Also useful for modelling and simulation
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What is Time?
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What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.
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What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .
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What is Time?

‘‘What then is time? If no one asks me, I know: if I

wish to explain it to one that asketh, I know not.’’

— St. Augustine, Confessions, 398AD.

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

. . . while automating the discretisation necessary for
implementation.
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Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a
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Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

There are also instantaneous occurrences called events.
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Signals and Events

FRP is based around time-varying values called signals (or
behaviours):

Signal a ≈ Time → a

There are also instantaneous occurrences called events.

One way to represent events is as Maybe types within signals:

Signal (Maybe a)
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Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.
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Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.

This has several advantages, e.g.

enforcing causality
optimisation opportunities
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Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.

This has several advantages, e.g.

enforcing causality
optimisation opportunities

Some languages go further and only provide functions on signals as
a first-class abstraction.
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Signal Functions

FRP languages keep signals abstract, providing several signals, and
functions on signals, as primitives.

This has several advantages, e.g.

enforcing causality
optimisation opportunities

Some languages go further and only provide functions on signals as
a first-class abstraction.

These are called signal functions:

SF a b ≈ Signal a → Signal b
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Yampa: An FRP Language

A DSL embedded in Haskell

No signals, only signal functions

Pretends to have continuous time

Has been used for a variety of applications: video games, sound
synthesis, robot simulators, GUIs, virtual reality, visual tracking,
animal monitoring. . .
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Yampa Routing Combinators

arr

f

identity

>>>

sf2sf1

&&&

sf1

sf2

parB

sf1

sf2

sfn

loop

sf

arr :: (a → b) → SF a b

identity :: SF a a

(≫) :: SF a b → SF b c → SF a c

(&&&) :: SF a b → SF a c → SF a (b, c)

parB :: [SF a b ] → SF a [b ]

loop :: SF (a, c) (b, c) → SF a b
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Some Yampa Primitives

Events

data Event a = NoEvent | Event a
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Some Yampa Primitives

Events

data Event a = NoEvent | Event a

tag :: Event a → b → Event b
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Some Yampa Primitives

Events

data Event a = NoEvent | Event a

tag :: Event a → b → Event b

Time-Dependent Primitives

integral :: Num a ⇒ SF a a

delay :: Time → a → SF a a

edge :: SF Bool (Event ())

switch :: SF a (b,Event e) → (e → SF a b) → SF a b
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Examples

Example Yampa Code

localTime :: SF a Time

localTime = arr (const 1) ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

iIntegral :: Num x ⇒ x → SF x x

iIntegral x = integral ≫ arr (+x)

switchWhen :: SF a b → SF b (Event e) → (e → SF a b) → SF a b

switchWhen sf sfe = switch (sf ≫ (identity &&& sfe))
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in h (x , y , b)
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in h (x , y , b)

Monadic Code (f :: a → m x)

λ (a, b) → do

x ← f a

y ← g (b, x)
h (x , y , b)
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in h (x , y , b)

Arrow Code (f :: SF a x)

proc (a, b) → do

x ← f −≺ a

y ← g −≺ (b, x)
h −≺ (x , y , b)
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Bouncing Balls

See accompanying code. . .
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Yampa Implementation

The SF data type (simplified)

data SF a b ≈ SF (DTime → a → (SF a b, b))

(DTime is the amount of time passed since the previous sample.)
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Summary

FRP languages are domain-specific languages for reactive
programming.

Their key characteristic is an implicit notion of time.

If you want to learn more about Yampa, I’d recommend Henrik
Nilsson’s recent mini-course:
http://www.cs.nott.ac.uk/~nhn/ITU-FRP2010/
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