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Reactive Programming

Reactive Program: continually interacts with its environment in a
timely manner.

Examples: video games, robot controllers, aeroplane systems . . .

Contrast with:

Transformational Programs, e.g. a compiler
Interactive Programs, e.g. accessing a database
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Functional Reactive Programming (FRP)

FRP languages are domain-specific languages (the domain being
reactive programming)

Key characteristic: inherent notion of time

Usually embedded in a host language (often Haskell)

Also useful for modelling and simulation
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Modelling Time

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .
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Modelling Time

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

. . . while automating the discretisation necessary for
implementation.
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Modelling Time

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

. . . while automating the discretisation necessary for
implementation.

In practice:

FRP languages vary in how well they preserve this abstraction;
while some abandon it altogether.
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Signals and Events

FRP is based around time-varying values called signals:

type Signal a ≈ Time → a
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Signals and Events

FRP is based around time-varying values called signals:

type Signal a ≈ Time → a

There are also instantaneous occurrences called events.
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Signals and Events

FRP is based around time-varying values called signals:

type Signal a ≈ Time → a

There are also instantaneous occurrences called events.

One (imperfect) way to represent events is as signals carrying
Maybe types:

type EventSignal a ≈ Signal (Maybe a)
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Signal Functions

In FRP languages:

signals are abstract
signals, and functions on signals, are provided as primitives
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Signal Functions

In FRP languages:

signals are abstract
signals, and functions on signals, are provided as primitives

Several advantages, e.g.

enforcing causality
optimisation opportunities
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Signal Functions

In FRP languages:

signals are abstract
signals, and functions on signals, are provided as primitives

Several advantages, e.g.

enforcing causality
optimisation opportunities

Some languages go further and only provide functions on signals as
a first-class abstraction.
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Signal Functions

In FRP languages:

signals are abstract
signals, and functions on signals, are provided as primitives

Several advantages, e.g.

enforcing causality
optimisation opportunities

Some languages go further and only provide functions on signals as
a first-class abstraction.

These are called signal functions:

type SF a b ≈ Signal a → Signal b
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Yampa: An FRP Language

A DSL embedded in Haskell

No signals, only signal functions

Pretends to have continuous time
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Basic Yampa Routing Combinators

arr

f

identity

>>>

sf2sf1

&&&

sf1

sf2

parB

sf1

sf2

sfn

arr :: (a → b) → SF a b

identity :: SF a a

(≫) :: SF a b → SF b c → SF a c

(&&&) :: SF a b → SF a c → SF a (b, c)

parB :: [SF a b ] → SF a [b ]
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Some Yampa Primitives

Events

data Event a = NoEvent | Event a
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Some Yampa Primitives

Events

data Event a = NoEvent | Event a

instance Functor Event where
fmap = ...

tag :: Event a → b → Event b

rMerge :: Event a → Event a → Event a

catEvents :: [Event a ] → Event [a ]
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Some Yampa Primitives

Events

data Event a = NoEvent | Event a

instance Functor Event where
fmap = ...

tag :: Event a → b → Event b

rMerge :: Event a → Event a → Event a

catEvents :: [Event a ] → Event [a ]

Time-Dependent Primitives

integral :: Num a ⇒ SF a a

delay :: Time → a → SF a a

edge :: SF Bool (Event ())

switch :: SF a (b,Event e) → (e → SF a b) → SF a b

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)
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Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

localTime :: SF a Time

localTime = constant 1 ≫ integral
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Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

localTime :: SF a Time

localTime = constant 1 ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge
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Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

localTime :: SF a Time

localTime = constant 1 ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

iIntegral :: Num x ⇒ x → SF x x

iIntegral x = integral ≫ arr (+x)
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Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

localTime :: SF a Time

localTime = constant 1 ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

iIntegral :: Num x ⇒ x → SF x x

iIntegral x = integral ≫ arr (+x)

switchWhen :: SF a b → SF b (Event e) → (e → SF a b) → SF a b

switchWhen sf sfe = switch (sf ≫ (identity &&& sfe))
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in (x , y , b)
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in (x , y , b)

Monadic Code (f :: a → m x)

λ (a, b) → do
x ← f a

y ← g (b, x)
return (x , y , b)
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in (x , y , b)

Arrow Code (f :: SF a x)

proc (a, b) → do
x ← f −≺ a

y ← g −≺ (b, x)
returnA −≺ (x , y , b)
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Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in (x , y , b)

Arrow Code (f :: SF a x)

proc (a, b) → do
x ← f −≺ a

y ← g −≺ (b, x)
returnA −≺ (x , y , b)

Note: returnA and identity are semantically equivalent
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Example: Bouncing Ball

See accompanying code. . .
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Summary

FRP languages are domain-specific languages for reactive
programming.

Their key characteristic is an implicit notion of time.

Yampa is one specific implementation of FRP.

Exercise: Add additional balls to the Bouncing Ball example.

Code available at http://www.ittc.ku.edu/~neil/talks.html
Email scripts to me by Friday 2nd November.
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