An Introduction to
Functional Reactive Programming
Lecture 1 (of 2)

Neil Sculthorpe

Functional Programming Group
Information and Telecommunication Technology Center
University of Kansas
neil@ittc.ku.edu

EECS 776
Lawrence, Kansas
26th October 2012

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming

Reactive Programming

@ Reactive Program: continually interacts with its environment in a
timely manner.

@ Examples: video games, robot controllers, aeroplane systems ...

@ Contrast with:

@ Transformational Programs, e.g. a compiler
@ Interactive Programs, e.g. accessing a database

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming

Functional Reactive Programming (FRP)

o FRP languages are domain-specific languages (the domain being
reactive programming)

@ Key characteristic: inherent notion of time
@ Usually embedded in a host language (often Haskell)

@ Also useful for modelling and simulation

Neil Sculthorpe Introduction to FRP (1 of 2)



Time

Modelling Time

@ The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

Neil Sculthorpe Introduction to FRP (1 of 2)



Time

Modelling Time

@ The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

@ ... while automating the discretisation necessary for
implementation.

Neil Sculthorpe Introduction to FRP (1 of 2)



Time

Modelling Time

@ The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

@ ... while automating the discretisation necessary for
implementation.

@ In practice:

@ FRP languages vary in how well they preserve this abstraction;
@ while some abandon it altogether.

Neil Sculthorpe Introduction to FRP (1 of 2)



Signals

Signals and Events

@ FRP is based around time-varying values called signals:

type Signal a = Time — a

Neil Sculthorpe Introduction to FRP (1 of 2)



Signals

Signals and Events

@ FRP is based around time-varying values called signals:

type Signal a = Time — a

@ There are also instantaneous occurrences called events.

Neil Sculthorpe Introduction to FRP (1 of 2)



Signals

Signals and Events

@ FRP is based around time-varying values called signals:
type Signal a = Time — a

@ There are also instantaneous occurrences called events.

@ One (imperfect) way to represent events is as signals carrying
Maybe types:

type EventSignal a = Signal (Maybe a)

Neil Sculthorpe Introduction to FRP (1 of 2)



Signals

Signal Functions

@ In FRP languages:

@ signals are abstract
@ signals, and functions on signals, are provided as primitives

Neil Sculthorpe Introduction to FRP (1 of 2)



Signals

Signal Functions

@ In FRP languages:

@ signals are abstract
@ signals, and functions on signals, are provided as primitives

@ Several advantages, e.g.

@ enforcing causality
@ optimisation opportunities

Neil Sculthorpe Introduction to FRP (1 of 2)



Signals

Signal Functions

@ In FRP languages:

@ signals are abstract
@ signals, and functions on signals, are provided as primitives

@ Several advantages, e.g.

@ enforcing causality
@ optimisation opportunities

@ Some languages go further and only provide functions on signals as
a first-class abstraction.

Neil Sculthorpe Introduction to FRP (1 of 2)



Signals

Signal Functions

@ In FRP languages:

@ signals are abstract
@ signals, and functions on signals, are provided as primitives

@ Several advantages, e.g.

@ enforcing causality
@ optimisation opportunities

@ Some languages go further and only provide functions on signals as
a first-class abstraction.

@ These are called signal functions:

type SF a b = Signal a — Signal b

Neil Sculthorpe Introduction to FRP (1 of 2)



Yampa

Yampa: An FRP Language

@ A DSL embedded in Haskell
@ No signals, only signal functions

@ Pretends to have continuous time

Neil Sculthorpe Introduction to FRP (1 of 2)



Yampa
Basic Yampa Routing Combinators

identity —
> sf, sf,
L 1
arr 2(@a— b) = SFab

identity :: SF a a

>) =SFab-—+SFbc— SFac
(8&) :SFab — SFac — SF a(b,c)
parB  ::[SF a b] — SF a[b]

Neil Sculthorpe Introduction to FRP (1 of 2)




Yampa

Some Yampa Primitives

data Event a = NoEvent | Event a

Neil Sculthorpe Introduction to FRP (1 of 2)



Yampa

Some Yampa Primitives

data Event a = NoEvent | Event a

instance Functor Event where

fmap = ...
tag . Event a — b — Event b
rMerge  :: Event a — Event a — Event a

catEvents :: [Event a] — Event [a]

Neil Sculthorpe Introduction to FRP (1 of 2)



Yampa

Some Yampa Primitives

data Event a = NoEvent | Event a

instance Functor Event where

fmap = ...
tag . Event a — b — Event b
rMerge  :: Event a — Event a — Event a

catEvents :: [Event a] — Event [a]

Time-Dependent Primitives

integral :: Num a = SF a a

delay :: Time — a — SF aa

edge :: SF Bool (Event ())

switch :: SF a (b, Event €) — (e — SF ab) — SF ab

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Examples

Example Yampa Code

constant :: b — SF a b
constant b = arr (A _ — b)

ot

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Examples

Example Yampa Code

constant :: b — SF a b
constant b = arr (A _ — b)

localTime :: SF a Time
localTime = constant 1 >> integral

ot

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Examples

Example Yampa Code

constant :: b — SF a b
constant b = arr (A _ — b)

localTime :: SF a Time
localTime = constant 1 >> integral

after :: Time — SF a (Event ())
after t = localTime >> arr (> t) >> edge

ot

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Examples

Example Yampa Code

constant :: b — SF a b
constant b = arr (A _ — b)

localTime :: SF a Time
localTime = constant 1 >> integral

after :: Time — SF a (Event ())
after t = localTime >> arr (> t) >> edge

ilntegral :: Num x = x — SF x x
ilntegral x = integral >> arr (+x)

ot

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Examples

Example Yampa Code

constant :: b — SF a b
constant b = arr (A _ — b)

localTime :: SF a Time
localTime = constant 1 >> integral

after :: Time — SF a (Event ())
after t = localTime >> arr (> t) >> edge

ilntegral :: Num x = x — SF x x
ilntegral x = integral >> arr (+x)

switchWhen :: SF a b — SF b (Event ) — (e — SF ab) — SF a b
switchWhen sf sfe = switch (sf >> (identity && sfe))

ot

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Arrow Notation

@ Yampa uses a special do notation (from the Arrow framework)

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Arrow Notation

@ Yampa uses a special do notation (from the Arrow framework)

Pure Code

A(a, b) —
letx = fa

in (x,y,b)

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Arrow Notation

@ Yampa uses a special do notation (from the Arrow framework)

Pure Code (fra — x)

A(a, b) —
letx = fa
y = g (b,x)
in (x,y,b)

Monadic Code (fa = mx)

A (a, b) — do
x <+ fa
y < g (b,x)
return (x, y, b)

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Arrow Notation

@ Yampa uses a special do notation (from the Arrow framework)

Pure Code (fra — x)

A(a, b) —
letx = fa
y = g (b,x)
in (x,y,b)

Arrow Code (f:: SF ax)

proc (a,b) — do
x<+ f —< a
y <& —= (b,x)
returnA — (x,y, b)

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Arrow Notation

@ Yampa uses a special do notation (from the Arrow framework)

Pure Code (fra — x)

A(a, b) —
letx = fa
y = g (b,x)
in (x,y,b)

Arrow Code (f:: SF ax)

proc (a,b) — do
x<+ f —< a
y <& —= (b,x)
returnA — (x,y, b)

@ Note: returnA and identity are semantically equivalent

Neil Sculthorpe Introduction to FRP (1 of 2)



Examples

Example: Bouncing Ball

See accompanying code. . .

Neil Sculthorpe Introduction to FRP (1 of 2)



Summary

Summary

@ FRP languages are domain-specific languages for reactive
programming.

@ Their key characteristic is an implicit notion of time.

@ Yampa is one specific implementation of FRP.

@ Exercise: Add additional balls to the Bouncing Ball example.
o Code available at http://www.ittc.ku.edu/~neil/talks.html
o Email scripts to me by Friday 2nd November.

Neil Sculthorpe Introduction to FRP (1 of 2)


http://www.ittc.ku.edu/~neil/talks.html

	Reactive Programming
	Time
	Signals
	Yampa
	Examples
	Summary

