
Reactive Programming Time Signals Yampa Examples Summary

An Introduction to
Functional Reactive Programming

Lecture 1 (of 2)

Neil Sculthorpe

Functional Programming Group

Information and Telecommunication Technology Center

University of Kansas

neil@ittc.ku.edu

EECS 776
Lawrence, Kansas
26th October 2012

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Reactive Programming

Reactive Program: continually interacts with its environment in a
timely manner.

Examples: video games, robot controllers, aeroplane systems . . .

Contrast with:

Transformational Programs, e.g. a compiler
Interactive Programs, e.g. accessing a database

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Functional Reactive Programming (FRP)

FRP languages are domain-specific languages (the domain being
reactive programming)

Key characteristic: inherent notion of time

Usually embedded in a host language (often Haskell)

Also useful for modelling and simulation

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Modelling Time

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Modelling Time

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

. . . while automating the discretisation necessary for
implementation.

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Modelling Time

The original idea of FRP was to provide a continuous-time
abstraction to the FRP programmer. . .

. . . while automating the discretisation necessary for
implementation.

In practice:

FRP languages vary in how well they preserve this abstraction;
while some abandon it altogether.

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Signals and Events

FRP is based around time-varying values called signals:

type Signal a ≈ Time → a

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Signals and Events

FRP is based around time-varying values called signals:

type Signal a ≈ Time → a

There are also instantaneous occurrences called events.

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Signals and Events

FRP is based around time-varying values called signals:

type Signal a ≈ Time → a

There are also instantaneous occurrences called events.

One (imperfect) way to represent events is as signals carrying
Maybe types:

type EventSignal a ≈ Signal (Maybe a)

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Signal Functions

In FRP languages:

signals are abstract
signals, and functions on signals, are provided as primitives

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Signal Functions

In FRP languages:

signals are abstract
signals, and functions on signals, are provided as primitives

Several advantages, e.g.

enforcing causality
optimisation opportunities

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Signal Functions

In FRP languages:

signals are abstract
signals, and functions on signals, are provided as primitives

Several advantages, e.g.

enforcing causality
optimisation opportunities

Some languages go further and only provide functions on signals as
a first-class abstraction.

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Signal Functions

In FRP languages:

signals are abstract
signals, and functions on signals, are provided as primitives

Several advantages, e.g.

enforcing causality
optimisation opportunities

Some languages go further and only provide functions on signals as
a first-class abstraction.

These are called signal functions:

type SF a b ≈ Signal a → Signal b

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Yampa: An FRP Language

A DSL embedded in Haskell

No signals, only signal functions

Pretends to have continuous time

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Basic Yampa Routing Combinators

arr

f

identity

>>>

sf2sf1

&&&

sf1

sf2

parB

sf1

sf2

sfn

arr :: (a → b) → SF a b

identity :: SF a a

(≫) :: SF a b → SF b c → SF a c

(&&&) :: SF a b → SF a c → SF a (b, c)

parB :: [SF a b ] → SF a [b ]

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Some Yampa Primitives

Events

data Event a = NoEvent | Event a

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Some Yampa Primitives

Events

data Event a = NoEvent | Event a

instance Functor Event where
fmap = ...

tag :: Event a → b → Event b

rMerge :: Event a → Event a → Event a

catEvents :: [Event a ] → Event [a ]

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Some Yampa Primitives

Events

data Event a = NoEvent | Event a

instance Functor Event where
fmap = ...

tag :: Event a → b → Event b

rMerge :: Event a → Event a → Event a

catEvents :: [Event a ] → Event [a ]

Time-Dependent Primitives

integral :: Num a ⇒ SF a a

delay :: Time → a → SF a a

edge :: SF Bool (Event ())

switch :: SF a (b,Event e) → (e → SF a b) → SF a b

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

localTime :: SF a Time

localTime = constant 1 ≫ integral

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

localTime :: SF a Time

localTime = constant 1 ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

localTime :: SF a Time

localTime = constant 1 ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

iIntegral :: Num x ⇒ x → SF x x

iIntegral x = integral ≫ arr (+x)

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Examples

Example Yampa Code

constant :: b → SF a b

constant b = arr (λ → b)

localTime :: SF a Time

localTime = constant 1 ≫ integral

after :: Time → SF a (Event ())
after t = localTime ≫ arr (> t) ≫ edge

iIntegral :: Num x ⇒ x → SF x x

iIntegral x = integral ≫ arr (+x)

switchWhen :: SF a b → SF b (Event e) → (e → SF a b) → SF a b

switchWhen sf sfe = switch (sf ≫ (identity &&& sfe))

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in (x , y , b)

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in (x , y , b)

Monadic Code (f :: a → m x)

λ (a, b) → do
x ← f a

y ← g (b, x)
return (x , y , b)

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in (x , y , b)

Arrow Code (f :: SF a x)

proc (a, b) → do
x ← f −≺ a

y ← g −≺ (b, x)
returnA −≺ (x , y , b)

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Arrow Notation

Yampa uses a special do notation (from the Arrow framework)

Pure Code (f :: a → x)

λ (a, b) →
let x = f a

y = g (b, x)
in (x , y , b)

Arrow Code (f :: SF a x)

proc (a, b) → do
x ← f −≺ a

y ← g −≺ (b, x)
returnA −≺ (x , y , b)

Note: returnA and identity are semantically equivalent

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Example: Bouncing Ball

See accompanying code. . .

Neil Sculthorpe Introduction to FRP (1 of 2)



Reactive Programming Time Signals Yampa Examples Summary

Summary

FRP languages are domain-specific languages for reactive
programming.

Their key characteristic is an implicit notion of time.

Yampa is one specific implementation of FRP.

Exercise: Add additional balls to the Bouncing Ball example.

Code available at http://www.ittc.ku.edu/~neil/talks.html
Email scripts to me by Friday 2nd November.

Neil Sculthorpe Introduction to FRP (1 of 2)

http://www.ittc.ku.edu/~neil/talks.html

	Reactive Programming
	Time
	Signals
	Yampa
	Examples
	Summary

