
TOWARDS SAFE AND EFFICIENT

FUNCTIONAL REACTIVE PROGRAMMING

NEIL SCULTHORPE, BSc.

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

July 2011

Abstract

Functional Reactive Programming (FRP) is an approach to reactive programming where sys-

tems are structured as networks of functions operating on time-varying values (signals). FRP is

based on the synchronous data-flow paradigm and supports both continuous-time and discrete-

time signals (hybrid systems). What sets FRP apart from most other reactive languages is

its support for systems with highly dynamic structure (dynamism) and higher-order reactive

constructs (higher-order data-flow). However, the price paid for these features has been the loss

of the safety and performance guarantees provided by other, less expressive, reactive languages.

Statically guaranteeing safety properties of programs is an attractive proposition. This is

true in particular for typical application domains for reactive programming such as embedded

systems. To that end, many existing reactive languages have type systems or other static

checks that guarantee domain-specific constraints, such as feedback being well-formed (causality

analysis). However, compared with FRP, they are limited in their capacity to support dynamism

and higher-order data-flow. On the other hand, as established static techniques do not suffice for

highly structurally dynamic systems, FRP generally enforces few domain-specific constraints,

leaving the FRP programmer to manually check that the constraints are respected. Thus, there

is currently a trade-off between static guarantees and dynamism among reactive languages.

This thesis contributes towards advancing the safety and efficiency of FRP by studying

highly structurally dynamic networks of functions operating on mixed (yet distinct) continuous-

time and discrete-time signals. First, an ideal denotational semantics is defined for this kind

of FRP, along with a type system that captures domain-specific constraints. The correctness

and practicality of the language and type system are then demonstrated by proof-of-concept

implementations in Agda and Haskell. Finally, temporal properties of signals and of functions

on signals are expressed using techniques from temporal logic, as motivation and justification

for a range of optimisations.

i

Acknowledgements

First and foremost I acknowledge my supervisor Henrik Nilsson. His guidance and assistance

over the last five years have been immeasurable, and this thesis would not have been possible

without him.

I also acknowledge the other members of the Functional Programming Laboratory, from

whom I have learned much in my time at Nottingham. In particular: Graham Hutton who

taught me functional programming, Thorsten Altenkirch who taught me logic, and Nils Anders

Danielsson who taught me Agda. I also thank those who have provided me with feedback on

this thesis or on my earlier papers, including Florent Balestrieri, Joey Capper, Laurence Day,

and especially, George Giorgidze.

Finally, I thank my examiners Venanzio Capretta and Colin Runciman for their time and

constructive comments.

ii

Contents

1 Introduction 1

1.1 Reactive Languages . 2

1.2 Embedded Domain-Specific Languages . 2

1.3 Contributions and Thesis Structure . 4

2 Agda and Notation 6

2.1 Introduction to Agda . 6

2.1.1 Overview . 6

2.1.2 Data Types . 7

2.1.3 Functions . 8

2.1.4 Propositions and Proofs . 9

2.2 AgdaFRP . 10

3 Functional Reactive Programming 12

3.1 Why Functional Reactive Programming? . 12

3.2 FRP Fundamentals . 13

3.2.1 Continuous-Time Signals . 13

3.2.2 Signal Functions . 14

3.2.3 Discrete-Time Signals . 15

3.2.4 Structural Dynamism . 15

3.2.5 Signal Generators . 16

3.3 Classic FRP . 17

3.3.1 Behaviours and Events . 17

3.3.2 CFRP Primitives . 17

3.3.3 Switching between Behaviours . 18

3.3.4 Example: Modelling Bouncing Balls . 18

3.3.5 Retaining Signals . 20

3.4 Unary FRP . 22

3.4.1 Signals, Signal Functions, and Events . 22

3.4.2 Primitive Signal Functions . 22

3.4.3 Primitive Routing Combinators . 23

3.4.4 Switching Combinators . 23

3.4.5 Freezing Signal Functions . 25

iii

CONTENTS iv

3.4.6 Example UFRP Programming . 25

3.4.7 Single-Kinded Signals . 28

3.5 Advantages of a Signal-Function Abstraction . 29

3.5.1 Implementation Implications . 29

3.5.2 Routing . 30

3.5.3 Switching . 31

3.5.4 Signal Function Objects . 31

3.5.5 Other Applications . 32

3.6 Conclusions . 32

4 N-ary FRP 34

4.1 N-ary FRP Conceptual Model . 34

4.1.1 Multi-Kinded Signals . 34

4.1.2 N-ary Signal Functions . 35

4.1.3 Signal Vector Descriptors . 35

4.1.4 Refined Signals and Signal Functions . 36

4.1.5 Why Change Prefixes? . 36

4.2 N-ary FRP Primitives . 37

4.2.1 Static Routers . 38

4.2.2 Dynamic Combinators . 39

4.2.3 Lifting Functions . 39

4.2.4 Primitive Signal Functions . 40

4.3 Example N-ary FRP Programs . 41

4.3.1 Additional Combinators . 41

4.3.2 Library Signal Functions . 42

4.4 Totality and Recursion . 43

4.5 Conclusions . 44

5 Embedded Implementations of N-ary FRP 46

5.1 Pull-Based Sampling . 46

5.2 Agda Embedding . 47

5.2.1 Network Nodes . 47

5.2.2 Routing . 48

5.2.3 A Distinct Initialisation Step . 51

5.2.4 Primitives . 52

5.3 Haskell Embedding . 56

5.3.1 Language Extensions . 56

5.3.2 Signals and Samples . 56

5.3.3 Time and Recursion . 57

5.3.4 Interaction with the Outside World . 57

5.4 Delaying Signals . 58

5.5 Conclusions . 59

CONTENTS v

6 Temporal Logic 61

6.1 Introduction . 61

6.2 Temporal Operators . 61

6.2.1 Lifted Logical Operators . 62

6.2.2 Priorean Operators . 62

6.3 Introducing and Eliminating Temporal Predicates 63

6.4 Properties of Time . 63

6.5 Properties of N-ary FRP . 64

6.5.1 Pointwise Sample Equality . 64

6.5.2 Causality and Decoupledness . 64

6.5.3 Statelessness . 65

6.5.4 Properties of Primitives . 65

6.6 Conclusions . 67

7 Type-safe Feedback 68

7.1 Causality Analysis . 68

7.2 Feedback Combinators . 69

7.2.1 Well-Defined Feedback . 70

7.2.2 Alternative Feedback Combinators . 72

7.3 Type System for N-ary FRP with Feedback . 73

7.3.1 Decoupledness Indices . 74

7.3.2 Refined Primitives . 74

7.3.3 An Additional Feedback Combinator . 75

7.4 Feedback Example . 76

7.4.1 Saving and Resuming . 76

7.4.2 Hypothetical Syntax . 77

7.5 Extending the Agda Embedding . 77

7.5.1 A Decoupled Transition Function . 77

7.5.2 Nodes . 78

7.5.3 Signal Functions . 78

7.5.4 Constructing Primitives . 80

7.5.5 Drawbacks of the Agda Embedding . 81

7.6 Extending the Haskell Embedding . 81

7.6.1 Decoupledness Indices . 81

7.6.2 Drawbacks of the Haskell Embedding . 82

7.7 Conclusions . 83

8 Change and Optimisation 84

8.1 FRP Optimisation . 84

8.1.1 Basic FRP Implementation Strategies . 85

8.1.2 Optimisation Opportunities . 85

8.2 Measuring Efficiency . 86

8.3 Change Properties . 87

8.3.1 Unchanging Signals . 87

CONTENTS vi

8.3.2 Another Pointwise Signal Equality . 89

8.3.3 Change Properties of Signal Functions . 90

8.3.4 Implications between Properties . 92

8.3.5 Properties of N-ary FRP Primitives . 93

8.4 Implementing Signal Function Properties . 95

8.5 Suggested Optimisations . 96

8.5.1 Structural Optimisation . 96

8.5.2 Change Propagation . 99

8.5.3 Interaction between Optimisations and Switching 101

8.5.4 Testing Optimisations . 101

8.6 Conclusions . 102

9 Extensions to N-ary FRP 103

9.1 Occurrences Immediately After a Point . 103

9.1.1 Additional Primitives . 104

9.1.2 Unresolved Issues . 105

9.1.3 Summary and Related Work . 109

9.2 Type-safe Initialisation . 109

9.2.1 Infinitesimal Delays . 110

9.2.2 Initialisation Descriptors . 111

9.2.3 Subtyping . 112

9.2.4 Refined Primitives . 112

9.2.5 Summary and Related Work . 114

9.3 Decoupledness Matrices . 114

9.3.1 Motivation . 114

9.3.2 Type System . 115

9.3.3 Retyping the Primitives . 116

9.3.4 Summary and Related Work . 118

9.4 Conclusions . 119

10 Related Work 120

10.1 Conceptual Models of FRP . 120

10.2 Static Safety Checks . 123

10.3 Optimisation of Reactive Languages . 124

10.4 Conclusions . 125

11 Summary and Future Work 126

11.1 Summary . 126

11.2 Future Work . 128

Bibliography 138

CONTENTS vii

A Utility Functions 139

A.1 Combinators . 139

A.2 Booleans . 140

A.3 Lists . 140

A.4 Maybe . 140

A.5 Intervals . 141

B N-ary FRP Conceptual Definitions 142

B.1 Utility Functions . 142

B.2 Lifting Functions . 143

B.3 Delaying Signals . 145

B.4 Filtering Event Signals . 145

B.5 Dynamic Combinators . 146

B.5.1 Advancing Signals . 146

B.5.2 Splicing . 146

B.5.3 Assuming the Sample Time . 147

B.5.4 Switch . 147

B.5.5 Freeze . 148

B.6 Miscellaneous Signal Functions . 148

B.7 Rising Edge Detection (when) . 148

C Source Code for Embeddings of N-ary FRP 150

C.1 The Delay Primitives . 150

C.2 Haskell Embedding of N-ary FRP . 152

C.3 Agda Embedding of N-ary FRP with Feedback 155

C.4 Haskell Embedding of N-ary FRP with Feedback 159

List of Figures

3.1 UFRP primitive combinators . 24

3.2 Additional UFRP routing combinators . 26

3.3 A signal function network modelling a falling ball 28

4.1 N-ary FRP routing primitives . 38

7.1 The N-ary FRP feedback combinator . 70

7.2 Deriving the loop combinator . 72

7.3 Alternative feedback combinators . 73

9.1 The network underlying accurate and inaccurate 115

9.2 The decoupledness matrix for arrowLoop . 118

viii

Chapter 1

Introduction

For many application domains, systems are required to be reactive rather than transformational

[50]. The input to such systems is not known in advance, but instead arrives continuously dur-

ing execution. A reactive system is thus expected to interact with its environment, interleaving

input and output in a timely manner [8, 9]. By timely, it is meant that a response is ex-

pected within an amount of time that is “reasonable” for the application domain at hand.

Consequently, some reactive systems provide hard real-time guarantees (meeting deadlines is

essential), while others, intended for less strict domains, only achieve soft real-time (meeting

deadlines is desirable) [17, 128].

Functional Reactive Programming (FRP) grew out of Conal Elliott’s and Paul Hudak’s work

on Functional Reactive Animation (Fran) [38]. The aim of FRP is to allow the full power of

modern Functional Programming [11, 58, 122] to be used for implementing reactive systems.

The basic idea is to model input and output as time-varying values called signals. Systems are

then described by combining signal functions (functions mapping signals to signals) into signal

processing networks. The nature of the signals depends on the application domain. Examples

include: video streams in the context of animation [38], graphical user interfaces [25, 26], visual

tracking [92, 103], and games [20, 27]; sensor input and control signals in robotics [57, 102] and

animal monitoring [97] applications; and synthesised sound signals [42].

Compared to other reactive languages, FRP is characterised by being highly expressive, but

lacking in safety guarantees and efficiency [105]. This thesis investigates ways of overcoming

those two deficiencies without sacrificing the expressiveness of the FRP paradigm. Principally,

this is achieved through a conceptual model designed to precisely characterise the abstractions

of FRP, and a type system that captures FRP-specific constraints. Properties of this model,

particularly those relating to notions of signal change with respect to time, are then studied as

motivation and justification for a range of FRP-specific optimisations. The specific contribu-

tions of this thesis are given in Section 1.3. However, the wider context of this work first needs

to be clarified.

1

CHAPTER 1. INTRODUCTION 2

1.1 Reactive Languages

A number of FRP variants exist. The basics of the early FRP approaches [38, 92, 127] are

discussed in Chapter 3, and a number of others are overviewed in Chapter 10. However, the

synchronous data-flow principle (modelling reactions as being instantaneous) [6, 48], and sup-

port for both continuous and discrete time (hybrid systems), are common to most FRP variants.

There are thus close connections to synchronous data-flow languages such as Esterel [9, 10], Lus-

tre [48], and Lucid Synchrone [104]; hybrid automata [52]; and languages for hybrid modelling

and simulation, such as Simulink [2]. However, FRP goes beyond most of these approaches by

supporting highly dynamic system structure and higher-order reactive constructs. A system is

structurally dynamic if its structure can change over time. It is highly structurally dynamic

if its structural configurations are not known in advance, but can be computed during execu-

tion. Throughout this thesis the term dynamism will be used to mean highly dynamic system

structure. Likewise, the term higher-order data-flow will mean that some reactive constructs

(signals or signal functions, depending on the FRP variant) are a first-class abstraction in the

language.

Dynamism and higher-order data-flow are becoming ever more important aspects of reactive

programming. They are essential for implementing reconfigurable systems, including systems

that receive software updates whilst running, which are increasingly prevalent [22]. They also

significantly extend the range of reactive systems that can be described naturally and easily.

Examples include visual tracking [92], video games [20, 27], and virtual-reality applications [12].

However, the expressiveness granted by dynamism and higher-order data-flow comes at a

cost: most FRP languages lack the space and time guarantees provided by most synchronous

data-flow languages. The reason for this difference in the two paradigms stems mainly from

their typical application domains. FRP has its origins in multimedia [38, 56], whereas the

synchronous data-flow languages have had commercial success in safety-critical domains such

as control systems for aeroplanes and nuclear power plants [7]. However, it is hard to draw

a line between the two paradigms on this basis. There has been work both on extending

synchronous data-flow languages with dynamism and higher-order features [17, 22, 120], as well

as on restricted FRP languages that have guaranteed space and time bounds [128, 129].

The other main distinction between the two paradigms is their model of time. The syn-

chronous data-flow languages are based on data-flow stream processing [126] (with time being

represented by the ordering of values in the stream), and thus have an inherently discrete

notion of time. By contrast, one of the original motivations of FRP was to model time contin-

uously, leaving the implementation to automate discretisation [38]. However, this isn’t a clear

distinction either, as some FRP variants abandon the continuous model of time and adopt a

stream-based approach directly [100, 128].

1.2 Embedded Domain-Specific Languages

FRP variants are usually implemented as embedded domain-specific languages (EDSLs) [55].

This involves defining the FRP language as a library within some general-purpose (and usually

functional) host language. To date, the most common choice of host language for FRP has

CHAPTER 1. INTRODUCTION 3

been Haskell [11, 122]. FRP variants embedded as Haskell libraries include: Fran [38], Yampa

[90, 92], Reactive [37], Grapefruit [63] and Elerea [99, 100]. A notable exception is FrTime

[23, 24], an FRP language embedded in the DrScheme environment [40].

There are many advantages to the embedded approach. Creating a programming language

from scratch is a laborious task, whereas an EDSL can be implemented quickly and easily as only

domain-specific aspects need to defined. General-purpose language features (e.g. numbers), as

well as associated libraries and tools (e.g. debuggers), come for free. If several EDSLs are

embedded in the same host language, then connecting them together is significantly simpler

than connecting independent languages. Learning an embedded language is also much easier

for an end-user who is already familiar with its host language. [55]

EDSLs also leverage the compilation and optimisation facilities of the host language. How-

ever, what does not come for free are domain-specific optimisations (or domain-specific error

messages [51]), as a host-language compiler has no knowledge of the embedded domain. While

it is possible to encode optimisations within an EDSL such that they will be applied at run-

time [90], this is significantly less efficient than compile-time optimisation. This is a well known

problem [28, 55], and many EDSLs come with either a pre-processor [77, 113] or domain-specific

compiler [39, 72] to improve performance. One of the reasons that Haskell is considered a good

host language is that the widely used Glasgow Haskell Compiler (GHC) [121] provides facilities

for compile-time meta-programming in the form of Template Haskell [115] and quasiquoting

[43, 80]. This is a convenient means of implementing such domain-specific optimisations [113],

and also allows significant flexibility in terms of the domain-specific syntax that can be encoded.

However, the highly dynamic nature of FRP means that some optimisation opportunities are

not known statically, and only arise at run-time. Chapter 8 of this thesis is concerned with

identifying domain-specific properties of FRP that could be exploited for domain-specific opti-

misation.

A drawback of EDSLs is that their type systems are restricted by those of their hosts.

By comparison, a stand-alone language can have a type system specialised to its application

domain. Furthermore, a domain-specific compiler can check for additional domain-specific

constraints beyond those expressed by the types [21, 30]. Such static checks are important,

as the increasing complexity of reactive systems makes it correspondingly harder to test them

sufficiently thoroughly. Moreover, in many typical reactive applications, such as embedded

systems [69], the cost of failure is very high, thereby making it imperative to statically guarantee

that the system will not fail [7]. Fortunately for the embedded approach, the type systems of

general-purpose functional languages are becoming ever-more expressive [125, 130], making it

increasingly feasible to express domain-specific constraints within the type system of the host

language. Chapters 7 and 9 of this thesis are concerned with this style of capturing FRP-specific

constraints.

Two host languages are used in this thesis: Haskell, and the dependently typed language

Agda [95]. Haskell is chosen because it has repeatedly proved itself a practical and effective

host language for FRP. The additional choice of Agda as a host language serves two purposes.

First, because it has a more powerful type system, it is easier to encode domain-specific con-

straints in Agda than in Haskell. This makes Agda more suitable for prototyping FRP type

systems. Second, Agda provides totality and termination checks. An embedding of FRP in

CHAPTER 1. INTRODUCTION 4

Agda is therefore guaranteed to be total and terminating, and thus the embedding constitutes

a machine-checked proof of the safety of the FRP implementation. Finally, note that Haskell

and Agda are both purely functional languages, and syntactically very similar. This maintains

a correspondence between the two embeddings and makes it fairly easy (in this instance) to

translate code between the two.

1.3 Contributions and Thesis Structure

The work presented in this thesis is mostly drawn from three previous papers [110, 111, 112]

co-authored by myself and Henrik Nilsson (my supervisor). This thesis supersedes all three

papers, refining and improving on the work therein, as well as adding some additional material.

The motivation behind this work was that implementing FRP (in its full expressiveness) in

a way that scales efficiently has proved challenging [36, 76], and remains an active research area

[37, 63, 75, 100]. Additionally, dynamism and the embedded approach to implementation have

obstructed many of the static checks present in synchronous data-flow languages [128]. As a

step towards overcoming these issues, we defined a new conceptual FRP model that respects the

abstractions of the FRP domain, while being convenient to implement, optimise, program with,

and reason about. This model, which we call N-ary FRP, is based around signal functions as the

central reactive abstraction, while supporting multi-kinded signals (maintaining a conceptual

distinction between continuous-time and discrete-time signals). While neither signal-function–

based FRP nor multi-kinded signals are new ideas, to our knowledge the combination of the

two has not been studied before (other signal-function–based models typically embed discrete

signals within continuous signals). I argue that such a model has many advantages including

conceptual precision, ease of implementation, language safety, and optimisation opportunities.

In brief, the contributions of this thesis are:

• An overview and comparison of the signal based and signal-function–based FRP models.

• A new FRP language based on signal functions and multi-kinded signals (N-ary FRP).

• An idealised denotational semantics for N-ary FRP, formally encoded in Agda.

• Type-system refinements for N-ary FRP that guarantee totality without prohibiting feed-

back and uninitialised signals.

• Proof-of-concept embeddings of N-ary FRP in Haskell and Agda, including the type-

system refinements.

• Identifying and formalising a number of useful domain-specific properties of the N-ary

FRP model, in particular those pertaining to notions of signal change and change-based

optimisation.

The structure of the thesis, along with the specific contributions of this author, is as follows:

• Chapter 2 contains a brief introduction to the Agda language and to the notational con-

ventions used in this thesis. There is no technical contribution in this chapter.

CHAPTER 1. INTRODUCTION 5

• Chapter 3 introduces the fundamental concepts of FRP, gives some examples of FRP

programming, and compares the signal-based and signal-function–based models. The

comparison is based on an earlier version written jointly with Henrik Nilsson [112]. The

concepts in this chapter are not new, and a similar comparison discussing some (though

not all) of the same issues can be found in Courtney [25].

• Chapter 4 defines the N-ary FRP conceptual model and language, and gives some exam-

ples of N-ary FRP programming. The technical content of this chapter is based on joint

work with Henrik Nilsson, and has appeared previously in [112].

• Chapter 5 describes an embedding of the N-ary FRP language in both Agda and Haskell.

This is individual work of this author, and is based on an earlier version that accompanied

[111].

• Chapter 6 contains an introduction to temporal logic, an encoding of temporal logic in

Agda, and the formulation of some N-ary FRP properties using this encoding. This is

individual work of this author, and is a significant revision of an earlier version that

appeared in [112].

• Chapter 7 extends the N-ary FRP language with a feedback combinator, and refines

the N-ary FRP type system to enforce the domain-specific constraint that all reactive

feedback must be well-defined. This chapter also contains corresponding extensions of

the Agda and Haskell embeddings from Chapter 5. This is individual work of this author,

a preliminary version of which appeared in [111].

• Chapter 8 considers optimisation opportunities for FRP, and formalises and proves several

domain-specific properties of N-ary FRP (using the temporal logic from Chapter 6) that

could be exploited for domain-specific optimisation. This is individual work of this author,

and is a significant revision of earlier versions that appeared in [110, 112].

• Chapter 9 discusses experimental extensions to the N-ary FRP model. The N-ary FRP

language is extended with uninitialised signals, and the type system is correspondingly

refined to ensure that this is safe. An extension of the N-ary FRP type system that

allows a more precise causality analysis is also considered. This is individual work of this

author. Most of this chapter is previously unpublished, though an earlier version of the

uninitialised-signals extension appeared in [111].

• Chapter 10 overviews related work. This is partially based on a previous review of recent

FRP developments written jointly with Henrik Nilsson [112].

• Chapter 11 discusses avenues for future work.

Finally, note that all definitions and program code in this thesis have been formalised in

Agda by this author. All such Agda code, along with some supplementary proof scripts and

the Agda and Haskell implementations of N-ary FRP, are available in an online archive [1].

Chapter 2

Agda and Notation

As discussed in Section 1.2, this thesis contains embeddings of FRP in two languages: Haskell

and Agda. However, a meta-language for expressing the semantics of FRP is also required.

The meta-language used by this thesis is Agda augmented with some additional syntax. This

language will be referred to as AgdaFRP. However, the contents of this thesis have also been

encoded in “genuine” Agda (the code is available in the online archive [1]), and translation

between the two is mostly straightforward. AgdaFRP is also the language used to express

example FRP code throughout this thesis, except when working within a specific host language.

This chapter gives a basic introduction to Agda, and then describes how AgdaFRP differs.

A reader acquainted with Agda can skip to Section 2.2.

2.1 Introduction to Agda

This section introduces the features of Agda that are pertinent to this thesis. The reader

is assumed to have a basic familiarity with Haskell; an unfamiliar reader should consult an

introductory textbook such as Bird [11], Hudak [56] or Hutton [60]. For a more comprehensive

introduction to Agda, consult Norell [96].

2.1.1 Overview

Agda is a dependently typed [94] language. The essence of dependent types is that the type

of the result of a function may depend on the value of its argument. In Agda there is little

distinction between data and types, with both appearing in type signatures and in program

code. To ensure that type checking is decidable in such a setting, Agda requires all functions to

be total and terminating. This also guarantees that Agda programs are free of run-time errors1.

Together, these features mean that Agda can exploit the Curry-Howard Correspondence

[31, 54] to encode propositions as types. The basic idea is that a type can represent a proposition,

with the elements of that type being proofs of the proposition. Thus any inhabited type is a true

proposition, and any uninhabited type is a false proposition. Properties about Agda programs

1Note however that Agda itself has not been formally verified, so all claims of guarantees in this thesis depend
on the assumption that the Agda language and type-checker are error-free.

6

CHAPTER 2. AGDA AND NOTATION 7

can thus be proved within the Agda language, and furthermore these proofs can be used in

Agda programs to ensure totality and termination.

2.1.2 Data Types

Agda data types are defined in a similar manner to GADTs [64] in Haskell. For example:

data Unit : Set where

unit : Unit

data Bool : Set where

false : Bool

true : Bool

data N : Set where

zero : N

succ : N → N

Type signatures are given with a single colon. Set is the type of types, analogous to kind ∗

in Haskell. Note that throughout this thesis, data constructors will be type-set in a sans-serif

roman font, and keywords in boldface roman font.

Parametrised data types are also possible. For example, option types, lists, product types

and sum types are defined as follows:

data Maybe (A : Set) : Set where

nothing : Maybe A

just : A → Maybe A

data List (A : Set) : Set where

[] : List A

:: : A → List A → List A

data × (A B : Set) : Set where

, : A → B → A × B

data ⊎ (A B : Set) : Set where

inl : A → A ⊎ B

inr : B → A ⊎ B

The underscores are used to define infix (and more generally, mixfix) operators, with the position

of the underscores denoting the position of the arguments. The types of the parameters to these

data types are stated explicitly as parameters may have types other than Set (though in these

particular cases they could be inferred automatically).

Data types may also have indices in addition to parameters. The distinction is that a

parameter is fixed over all constructors, whereas an index may depend on the constructor.

Syntactically, a parameter appears before the colon in the type signature, and an index appears

after the colon. For example, the type of vectors (lists indexed by their length) is as follows:

data Vec (A : Set) : N → Set where

[] : Vec A zero

:: : {n : N} → A → Vec A n → Vec A (succ n)

A is a parameter and thus is the same for all constructors, whereas the natural number denoting

the length of the vector is an index and varies between constructors. Note that Agda allows

constructor names to be overloaded, and thus the same constructors can be used as for List .

The {n : N} will be explained in the next section.

CHAPTER 2. AGDA AND NOTATION 8

Finally, a dependent product type (Σ-type) is defined as follows:

data Σ (A : Set) (B : A → Set) : Set where

, : (a : A) → B a → Σ A B

This has a dependent type; specifically the type of the second element of the product depends

on the value of the first element. The notation (a : A) means that the value of type A is

bound to identifier a for the remainder (to the right) of the type signature. B a is a type that

is computed by applying the type constructor B to the value a. There will be an example of

using Σ-types in the next section.

2.1.3 Functions

Functions are defined in a similar manner to Haskell; for example:

isZero : N → Bool

isZero zero = true

isZero (succ) = false

However, when defining polymorphic functions all type arguments must be explicitly quantified.

For example, a polymorphic identity function could be defined as follows:

id : (A : Set) → A → A

id A a = a

In many cases, some arguments can be automatically inferred at the application site. To

exploit this, arguments can be denoted as implicit arguments by enclosing them in curly braces.

For example, the Set argument of the id function could be made implicit as follows:

id : {A : Set } → A → A

id a = a

Whenever id is used, providing the Set argument is optional if it can be inferred from the

context. Thus, for example, the following two definitions are equivalent:

idBool : Bool → Bool

idBool = id

idBool : Bool → Bool

idBool = id {Bool }

If implicit arguments are needed in the function definition they can be brought into scope

explicitly like so:

id : {A : Set } → A → A

id {A} a = a

When the result type of a function is not fully known, Σ-types can be used to encode

existential quantification. For example, a function that maps a list to a vector can be defined

as follows:

listToVec : {A : Set } → List A → Σ N (Vec A)

listToVec [] = (zero, [])

listToVec (a :: as) with listToVec as

... | (n, v) = (succ n, (a :: v))

Note that with is analogous to Haskell’s case: in this instance the result of listToVec as is

bound to the pattern (n, v).

CHAPTER 2. AGDA AND NOTATION 9

2.1.4 Propositions and Proofs

As previously mentioned, propositions can be represented as types and proofs can be represented

as elements of those types. Falsehood is represented by an empty type (it is uninhabited and

is therefore unprovable), and truth by the unit type (it is inhabited by unit and is therefore

always true):

True : Set

True = Unit

data False : Set where

Implication corresponds to a function. Thus, for example, Not A can be defined as a function

mapping A to False:

Not : Set → Set

Not A = A → False

Note that the expression A → False is a type: the arrow is the same function arrow that

appears in type signatures. Somewhat unfortunately, the same arrow symbol is used for lambda

abstractions (in the same way as Haskell). Thus, in an equivalent definition of Not that uses a

lambda, the same symbol has two different meaning in the same expression:

Not : Set → Set

Not = λ A → (A → False)

True, False and Not are useful for defining predicates over data types, for example:

IsNothing : {A : Set } → Maybe A → Set

IsNothing nothing = True

IsNothing (just) = False

IsJust : {A : Set } → Maybe A → Set

IsJust ma = Not (IsNothing ma)

However, many propositions require their own specialised data type. For example, propositional

equality can be defined as follows:

data ≡ {A : Set } : A → A → Set where

refl : {a : A} → a ≡ a

Thus refl (reflexivity) is the sole proof of propositional equality.

A more complicated proof data type is that of the less-than relation on natural numbers:

data < : N → N → Set where

zlt : ∀ {n } → zero < succ n

slt : ∀ {m n } → m < n → succ m < succ n

That is, zero is less than the successor of any natural number, and succ is monotonic with

respect to <. The use of ∀ is Agda syntactic sugar that allows the types of identifiers to be

omitted when they can be inferred. For example, ∀ {m n } is sugar for {m n : N}. This

notation is also valid for explicit arguments, in which case the curly braces are omitted.

New properties/types can be defined in the same way as functions. For example, the less-

than-or-equal relation can be defined as follows:

6 : N → N → Set

m 6 n = (m < n) ⊎ (m ≡ n)

Properties can be used in function definitions to ensure that functions are total. For example,

consider the following subtraction function:

CHAPTER 2. AGDA AND NOTATION 10

sub : (m n : N) → (n 6 m) → N

sub m zero p = m

sub zero (succ n) (inl ())

sub zero (succ n) (inr ())

sub (succ m) (succ n) (inl (slt p)) = sub m n (inl p)

sub (succ m) (succ .m) (inr refl) = zero

This function takes a proof that (n 6 m) as an additional argument, thereby constraining

the natural numbers that sub can be applied to. Note that this is a dependent function: the

type of the proof depends on the values of the first two arguments. Two as-yet-unmentioned

features of Agda are used in this definition. First, the use of () is an absurd pattern. This is

special syntax used to denote that the type is empty, and thus that there is no possible match

for this pattern. In this particular case, there are no constructors of type (succ n ≡ zero) or of

type (succ n < zero). When an absurd pattern is used, the right-hand side of the equation is

omitted (as it cannot be reached). Using absurd patterns is necessary to convince Agda that

functions are total; these cases cannot just be omitted as would be done in Haskell. The second

feature is the dot-pattern in the final case. When the refl constructor is pattern matched on,

its type unifies the two identifiers m and n. This is denoted by replacing n with .m (or m with

.n), which means that n has been constrained to be equal to m.

2.2 AgdaFRP

The meta-language of this thesis is an Agda variant that will be referred to as AgdaFRP. This

is not a language with any formal basis: it is merely a convenient notation for expressing the

ideas in this thesis without straying too far from the accompanying Agda encoding. There are

three main reasons why Agda is not used directly:

• Some conceptual definitions (particularly those pertaining to real numbers) are not com-

putable, and thus cannot be defined in Agda.

• Agda requires all functions to be total and terminating: while these are desirable features

of an FRP language, it is useful to state definitions where this is not the case (particularly

when partiality or termination is the subject of discussion).

• Augmenting Agda with additional syntactic sugar allows the presentation to be clarified,

as some of the Agda definitions are rather verbose.

In the first case, AgdaFRP makes use of more general mathematical notation to express

non-computable conceptual definitions. In the accompanying Agda code, these definitions are

postulated as axioms.

In the second case, the definitions have still been encoded in Agda: the termination checker

is simply switched off for those definitions (using the --no-termination-check option). Note that

some defined functions are terminating, but are not recognised as such by the Agda termination

checker. These functions could be restructured in such a way that they pass the termination

checker, but that would make their presentation less clear. Also, AgdaFRP permits infinite

terms (similarly to lazy languages such as Haskell). This is necessary for some of the exam-

ple code from previous FRP variants, and is also used once when defining N-ary FRP code

(discussed in Section 4.4).

CHAPTER 2. AGDA AND NOTATION 11

In the third case, the additional syntactic sugar is mostly taken from Haskell. Specifically,

the following conveniences are permitted:

• Operator sections in the style of Haskell.

• Pattern guards, case expressions, and pattern matching under lambdas and in let ex-

pressions. In the accompanying Agda code these are all replaced by with expressions.

• Implicit arguments may be omitted from type signatures. Any free identifiers present in

type signatures should be assumed to be universally quantified at the top level (as is the

case in Haskell).

• Implicit arguments that can be inferred by the reader are omitted even if Agda cannot

infer them.

• Some function names are overloaded when it is always clear from the context which one

is meant. For example,6 is used both as a type constructor (as in Section 2.1.4) and as a

binary operator returning a Boolean. Furthermore, it is overloaded onto several numeric

types.

Agda also has a universe hierarchy : the type of Set is Set1, the type of Set1 is Set2, and so

forth. However, for simplicity, AgdaFRP takes the type of Set to be Set . The same approach

is taken in the accompanying Agda code by using the --type-in-type option. This creates an

inconsistency in the logic, but this inconsistency is not exploited.

Finally, note that AgdaFRP is used for expressing both FRP semantics and example FRP

code. To limit confusion between semantics, example FRP code, and embedded Agda imple-

mentations, this thesis uses the ≈ symbol instead of = when defining the semantics of an entity

that is first-class in the FRP language.

Chapter 3

Functional Reactive

Programming

This chapter introduces the fundamental concepts of Functional Reactive Programming (FRP).

Two distinct models of FRP are then described: Classic FRP (CFRP) and Unary FRP (UFRP).

This should give background on FRP, and also provide some examples of FRP programming.

However, as these particular FRP models are not the principal topic of this thesis, only selected

parts of each variant are discussed. The chapter concludes with a comparison of these two

branches of FRP, as motivation for the N-ary FRP model that will follow in Chapter 4.

3.1 Why Functional Reactive Programming?

Taking a purely functional approach to reactive programming brings with it all of the usual

advantages of functional programming, such as powerful facilities for modularity, abstraction

and ease of reasoning [58]. However, there are some aspects of reactive programming for which

a functional approach is particularly well-suited.

Some common applications of FRP include modelling physical systems [89], or involve sim-

ulating physical laws as part of a larger system (such as governing the movement of entities in a

video game [27]). Such physical laws are often defined by differential equations, and it is much

easier for an end-user to translate such equations into declarative code than into imperative

code [89, 127].

One advantage of a purely functional approach is that it makes the system easier to par-

allelise and distribute. Consider that FRP programs define synchronous data-flow networks

that execute over a time period. Each network node encapsulates a local state that allows it

to remember the past, but each such state is inaccessible from outside the node. Purely func-

tional data types are exactly what is needed to represent such nodes, as, being immutable, they

cannot be modified from elsewhere in the program. Thus if two nodes (or sub-networks) are in

parallel in the network structure, then it is safe to execute them concurrently, as they cannot

interfere with each other. As demonstrated by Google’s MapReduce Framework [34], once such

non-interference is established it is much easier to efficiently execute extremely large programs

12

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 13

(whether on a multi-processor machine or in a distributed setting).

If a reactive language is implemented as a domain-specific embedding (as discussed in

Section 1.2), then it is highly desirable that the host language provides sufficient abstraction

facilities to express all the primitives of the reactive language [55]. Not only does this make

implementing an embedding much simpler, it also allows the end user to be presented with

an uncluttered interface. Powerful abstraction capabilities may not be unique to functional

programming, but functional languages typically have more powerful abstraction capabilities

(such as first-class functions) than most imperative languages. In particular, it is much easier

to provide abstractions if it is possible to safely name any expression in the host language (as

is the case in a pure lazy language or a pure total language).

None of the FRP variants discussed in this thesis are dependently typed languages. Yet the

two host languages used in this thesis are Agda, which is dependently typed, and Haskell, which

provides some dependently typed features via language extensions (discussed in Section 5.3.1).

This is deliberate: the N-ary FRP type system could not be directly embedded in a simply typed

host language. Note however that this requirement is specific to N-ary FRP; most FRP variants

have been successfully embedded in simply typed languages. Of course, if an FRP language

is embedded in a dependently typed language, then the FRP programmer can incorporate

dependent types into her FRP programs. In this author’s opinion, dependent types would be

as useful for capturing invariants and providing greater type precision in FRP as they are in

general, but being in a reactive setting does not make them more useful than usual.

3.2 FRP Fundamentals

FRP languages can be considered to have two levels to them: a functional level and a reactive

level [128]. The functional level is a pure functional language. FRP implementations are usually

embedded in a host language, and in these cases the functional level is provided entirely by

the host. The reactive level is concerned with time-varying values called signals. At this level,

functions operating on signals are used to construct synchronous data-flow networks. There are

thus two distinct function spaces, which allows for level-specific operations. However, the levels

are interdependent. The reactive level relies on the functional level for carrying out arbitrary

pointwise computations on signals, while some reactive constructs are first-class entities at the

functional level.

An FRP language consists of a set of primitive first-class reactive constructs, and a set of

primitive combinators that combine reactive constructs into signal processing networks. The

key point about such primitives is that they only allow the construction of networks that respect

the conceptual model.

3.2.1 Continuous-Time Signals

Time is considered to be continuous in FRP. Signals are thus modelled as functions from

continuous-time to value, where time is taken to be the set of non-negative real numbers:

Time ≈ {t ∈ R | t > 0}

Signal A ≈ Time → A

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 14

This conceptual model provides the foundation for an ideal denotational semantics. Of course, in

order to be reactive, any digital implementation of a continuous-time signal will have to sample

the signal over a discrete sequence of time steps, and will consequently only approximate the

ideal semantics. The advantage of the conceptual model is that it abstracts away from such

implementation details. It makes no assumptions as to the rate of sampling, whether the

sampling rate is fixed, or how sampling is performed [38]. It also avoids many of the problems

of composing subsystems that have different sampling rates. The ideal semantics is thus helpful

for understanding FRP programs, at least to a first approximation. It is also abstract enough

to leave FRP implementers considerable freedom [36, 37].

That said, implementing FRP completely faithfully to the ideal semantics is challenging.

At the very least, a faithful implementation should, for “reasonable programs”, converge to the

ideal semantics in the limit as the sampling interval tends to zero [127]. But even then it is hard

to know how densely one needs to sample before an answer is acceptably close to the ideal.

3.2.2 Signal Functions

Signal functions are conceptually functions on signals:

SF A B ≈ Signal A → Signal B

In some FRP languages (such as Yampa [92]), signal functions, rather than signals, are the

primary reactive abstraction. Signal functions are first-class entities in such languages, while

signals have no independent existence of their own. This is the approach taken by the N-ary

FRP language defined in this thesis (Chapter 4).

What if plain signals are needed; that is, a time-varying value that depends on no input?

Well, a signal function that takes a unit signal as input (or is entirely polymorphic in its input)

essentially serves the same purpose. (However, see the discussion in Section 3.2.5: these are

really signal generators.)

To make signal functions suitable for implementing reactive systems, signal functions are

constrained to be temporally causal. Temporal causality means that effects must not precede

causes with respect to time (the present can depend on the past but not the future). Thus, a

temporally causal signal function is one such that its output at time t is uniquely determined

by its input over the interval [0, t]. This is formalised in Section 6.5.2. In all FRP variants

that are considered in this thesis, temporal causality is enforced by only providing primitive

signal functions that are temporally causal and primitive combinators that preserve temporal

causality.

Aside: Notions of Causality

Temporal causality is specified because there are other notions for which the term causality

is used. Computational causality refers to cause and effect relationships where one thing is

computed from another, but without reference to any notion of time. In the field of modelling

languages the term causality is used in this computational sense. Thus, in such languages, a

causal model is one defined by directed equations (what is computed from what is explicit),

whereas a non-causal (or acausal) model is one defined by undirected equations. In the latter

case, the equations express a relation between signals, but do not divide them into inputs and

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 15

outputs. Causalisation of such models means re-writing the equations in a computationally

causal form, which is required to make them suitable for simulation. If there is no dependency

whatsoever between two signals, then they are said to be causally unrelated. [19]

FRP programs are computationally causal specifications of temporally causal systems. The

generalisation of FRP to computationally acausal specifications is called Functional Hybrid

Modelling [93], but that is beyond the scope of this thesis. Finally, note that the term temporally

acausal refers to situations where the present can depend on the future as well as the past, and

that the term temporally anticausal refers to situations where the present can depend on the

future but not the past. For the remainder of this thesis, whenever the terms causal or acausal

are used, it will be in the temporal sense.

3.2.3 Discrete-Time Signals

Conceptually, discrete-time signals (often called event signals) are signals whose domain of

definition is an at-most-countable set of points in time. Each point of definition signifies some

event that is without any extent in time. Inclusion of discrete-time signals, along with operations

on them and operations for mediating between continuous-time and discrete-time signals, is

what makes most FRP variants capable of handling hybrid systems [38, 92].

However, different FRP variants have taken different approaches to the nature of discrete-

time signals. One possibility is to make a fundamental distinction between continuous-time and

discrete-time signals on the grounds that they enjoy distinct properties [24, 37, 38]. Separating

them facilitates taking advantage of these differences for being more precise about applicable

operations or for optimisation purposes [37, 63]. This approach will be referred to as multi-

kinded FRP as there is more than one kind of signal. For example, CFRP is multi-kinded (see

Section 3.3.1).

Another possibility is to define discrete-time signals as a subtype of continuous-time signals

by lifting the range of signals, such as by using an option type [92, 99, 128]. This approach

will be referred to as single-kinded FRP as there fundamentally is only one kind of signal. For

example, UFRP is single-kinded (see Section 3.4.1).

3.2.4 Structural Dynamism

As discussed in Section 1.1, one of the main things that sets FRP apart from the synchronous

data-flow languages is its support for dynamism. Dynamic reconfigurations of the network

structure are referred to as structural switches, and the points in time at which reconfiguration

takes place are called moments of switching.

A common way that FRP languages allow dynamism to be expressed is by providing one

or more switching combinators as language primitives. As structural switches are discrete

instantaneous occurrences, event signals are used to control when they occur. Typically, a

switching combinator will be controlled by a specific event signal. Most combinators are such

that they apply a structural switch either at the time of the first event occurrence within the

event signal, or whenever there is an event occurrence within the event signal. The details

of switching varies between FRP systems, but the essential idea is that, at the moment of

switching, one signal, called the subordinate signal, is removed from the network, and a new

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 16

signal, called the residual signal, is inserted in its place. This is called switching-out the

subordinate signal and switching-in the residual signal.

Switching combinators often allow the residual signal to depend on the event that triggered

the switch. This is usually expressed by a switching function: a function mapping the event

value to a signal. This means that, in general, the residual signal cannot be computed until

the moment of switching. This has important consequences. First, it cannot be assumed that

switching only happens within a predetermined finite set of system configurations. Second, it

raises the question as to over what range of time the residual signal is defined: from the system

start time or from the time it was switched-in? This is discussed in the next section.

For a concrete example of a switching combinator, see Section 3.3.3 that provides a formal

definition of such a combinator in the setting of CFRP.

What about a setting where signal functions, not signals, is the primary reactive abstraction?

In that case, switching takes place between signal functions, not signals. Other than that, the

ideas are very similar. See Section 3.4.4 for a definition of that style of switching combinator.

3.2.5 Signal Generators

Switching combinators defined on signals can either “start” the residual signal at the same time

as the subordinate signal, or when it is switched-in. If all switching combinators adhere to the

former, then the start time of all signals in the entire system will be the system start time.

This is the approach taken by Fran [38] and Reactive [37].

The first choice is problematic if the residual signal depends on the value of the triggering

event, as this is not known until the moment of switching. Consequently, at the moment of

switching, the residual signal has to be retroactively computed up to that moment. In an

implementation, this requires all past input to be remembered, a so-called space leak, and a

catch-up computation to be performed, a so-called time leak [25, 36, 75, 76]. The longer the

up-time of the system, the more cumbersome this becomes. Consequently, many FRP variants

with first-class signals choose the second option: to start the residual signal at the moment of

switching [99, 100, 127].

However, once there are signals that can start at different times, the conceptual model of

signals as functions from time to value is insufficient. The value of a signal no longer just

depends on the time at which it is sampled, but also the time at which it starts. To express

this, the concept of a signal generator [63, 100, 127] is needed:

StartTime = Time

SampleTime = Time

SignalGenerator A ≈ StartTime → SampleTime → A

Or, equivalently, a signal generator is a function that, given a start time as an argument,

produces a signal as the result:

SignalGenerator A ≈ StartTime → Signal A

The key point is that two signals created from the same signal generator can be (and often are)

different if started at different times.

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 17

3.3 Classic FRP

There are several variants of CFRP, but they are all based around multi-kinded first-class

signals: Behaviours (continuous-time signals) and Events (discrete-time signals). This section

introduces a basic CFRP language, and then gives some examples of CFRP programming.

3.3.1 Behaviours and Events

In many CFRP variants, Behaviours and Events are actually signal generators, not signals

[127]. In these cases, a Behaviour is thus (conceptually) a function that maps a start time and

a sample time to a value:

Behaviour A ≈ StartTime → SampleTime → A

An Event is similar, except that it produces a (time-ordered and finite) list of event occurrences

up to the sample time1:

Event A ≈ StartTime → SampleTime → List (Time × A)

When defining similar functions over Behaviours and Events, this thesis adopts the naming

convention of adding a ‘B’ or ‘E’ suffix, respectively. In most implementations some form of

overloading is employed.

3.3.2 CFRP Primitives

This section introduces some CFRP primitives, along with their conceptual definitions. The

utility functions used in these definitions can be found in Appendix A.

First, some lifting functions that lift values and functions from the functional level to operate

over Behaviours are defined in the following pointwise fashion:

constant : A → Behaviour A

constant a ≈ λ t0 t1 → a

liftB : (A → B) → Behaviour A → Behaviour B

liftB f beh ≈ λ t0 t1 → f (beh t0 t1)

liftB2 : (A → B → C) → Behaviour A → Behaviour B → Behaviour C

liftB2 f beh1 beh2 ≈ λ t0 t1 → f (beh1 t0 t1) (beh2 t0 t1)

It can be useful to ignore event occurrences at the start time of an Event ; a primitive

combinator that does this is defined as follows:

notYet : Event A → Event A

notYet ev ≈ λ t0 t1 → dropWhile ((6 t0) ◦ fst) (ev t0 t1)

A real-valued Behaviour can be integrated with respect to time. Note that the value of the

resultant Behaviour at any given time depends upon the past values of the argument Behaviour :

integral : Behaviour R → Behaviour R

integral beh ≈ λ t0 t1 →
∫
t1

t0
(beh t0 t) dt

It is also useful to have an integration function that has an initial value other than zero. Such

an initialised integral can be defined within the CFRP language (rather than as a primitive):

1There are also some side conditions on the definition of Event , but discussion of these is postponed until
Section 4.1.5 to avoid obfuscating the key concepts in the present section.

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 18

iIntegral : R → Behaviour R → Behaviour R

iIntegral x = liftB (+ x) ◦ integral

This thesis adopts the naming convention of adding an ‘i’ prefix to functions that take an initial

value as an argument.

Finally, when is a primitive function that mediates between Behaviours and Events :

when : (A → Bool) → Behaviour A → Event A

The conceptual definition of when is omitted as it is quite involved. It can be found in Wan and

Hudak [127]. Informally, the resultant Event contains an occurrence at each time point that

the predicate (the first argument) applied to the value of the Behaviour (the second argument)

changes from false to true. The value of the occurrence is the value of the Behaviour at that

time point. There are two crucial points here: events only occur when the result of the predicate

changes (not whenever it holds), and, consequently, there is never an event occurrence at the

start time of when.

3.3.3 Switching between Behaviours

As discussed in Section 3.2.4, switching combinators are a means of expressing dynamism. The

following is a typical CFRP switching combinator:

untilB : Behaviour A → Event E → (E → Behaviour A) → Behaviour A

untilB beh ev f ≈ λ t0 t1 → case ev t0 t1 of

[] → beh t0 t1

(te, e) :: → (f e) te t1

The first argument is the subordinate Behaviour ; the second argument is the Event that controls

when the structural switch occurs; and the third argument is the switching function. The

resultant Behaviour is that of the subordinate Behaviour until the first occurrence in the event

signal. At which point, the switching function is applied to the event value to generate a residual

Behaviour . Henceforth (including the moment of switching), the resultant Behaviour is that of

the residual Behaviour , which only starts at the moment of switching.

Recall that an alternative design choice would be to have the residual Behaviour start at

the same time as the subordinate Behaviour . The semantics of such a switching combinator

would be:

untilB ′ : Behaviour A → Event E → (E → Behaviour A) → Behaviour A

untilB ′ beh ev f ≈ λ t0 t1 → case ev t0 t1 of

[] → beh t0 t1

(te, e) :: → (f e) t0 t1

If all switches were of the untilB ′ type, then t0 would always be 0, the global system start

time. This means that the start time parameter becomes redundant, and Behaviour and Event

become signals as opposed to signal generators. But, as has been discussed, this can lead to

performance problems.

3.3.4 Example: Modelling Bouncing Balls

To demonstrate CFRP programming, the classic Bouncing-Ball example (also found in Nilsson

[89], Courtney [25] and Liu [75]) is considered. Bouncing balls require hybrid modelling because

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 19

the continuous motion of the ball is broken by discrete events (when the ball hits the ground).

For simplicity: balls are modelled as point masses, an absence of air resistance is assumed,

and only one dimension is considered (the height of the ball above the ground). However,

to demonstrate the modularity and higher-order benefits of FRP, distinct balls that behave

differently when they impact the ground will be considered.

Falling Balls

The configuration of a ball can be represented by a pair of its height and velocity:

Acceleration = R

Velocity = R

Height = R

Ball = Height × Velocity

For the purposes of this example, assume the units are metres and seconds. The gravitational

constant can thus be set:

g : Acceleration

g = 9 .81

A Behaviour that models a freely falling ball can now be constructed. This is achieved by

integrating the acceleration (in this case gravity) to compute the velocity, and integrating the

velocity to compute the height. The Behaviour is parameterised on an initial ball configuration:

fallingBall : Ball → Behaviour Ball

fallingBall (h0, v0) = let a = constant (−g)

v = iIntegral v0 a

h = iIntegral h0 v

in liftB2 (,) h v

Bouncing Balls

The next step is to model interaction with the ground. First, a predicate to detect when a ball

impacts the ground is required, as is a function to negate a ball’s velocity:

detectImpact : Ball → Bool

detectImpact (h,) = h 6 0

negateVel : Ball → Ball

negateVel (h, v) = (h,−v)

Next, observe that a bounce is a discrete occurrence that will cause a discontinuity in the

behaviour of the ball. Thus a bounce is an event occurrence, and a bounce detector is a

function mapping Behaviour Ball to Event Ball (the value of the event occurrence being the

configuration of the ball at the moment of impact):

detectBounce : Behaviour Ball → Event Ball

detectBounce = when detectImpact

A Behaviour for a ball that bounces perfectly elastically is thus defined:

elasticBall : Ball → Behaviour Ball

elasticBall b = let beh = fallingBall b

in untilB beh (detectBounce beh) (elasticBall ◦ negateVel)

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 20

Intuitively, this says that an elastic ball should behave as a falling ball until a bounce is detected.

At which point, the ball should have its velocity negated, and then have its configuration used

to initialise a new elasticBall behaviour.

A Behaviour for a ball that collides perfectly inelastically with the ground can be defined

similarly:

inelasticBall : Ball → Behaviour Ball

inelasticBall b = let beh = fallingBall b

in untilB beh (detectBounce beh) (λ → constant (0, 0))

The definition of elasticBall is a good example of a situation where a Behaviour should not

be started until it is switched-in. If elasticBall had been defined using untilB ′, then the residual

Behaviour (the recursive call to elasticBall) would start at the same time as the subordinate

behaviour (fallingBall), with its initial configuration being that of the ball when it bounces.

Imagine the ball first bounces after 5 seconds. The overall behaviour immediately after the

bounce would then be that of a ball 5 seconds after such a bounce! To someone viewing an

animation of the ball, it would appear to “jump” 5 seconds into the future at the moment of

the bounce.

This is not to say that there are never situations when it is desirous to have Behaviours

starting before they are switched-in though, as will be seen shortly.

Repositioning Balls

The final addition to this model is the capacity for a ball to be arbitrarily moved to a new

position (and given a new velocity) by some external actor. The intuitive way to express this

would seem to be as follows:

resetBall : Event Ball → (Ball → Behaviour Ball) → Ball → Behaviour Ball

resetBall ev f b = untilB (f b) ev (resetBall ev f)

The idea would be that the first argument (ev) is the Event that controls the resets, the second

argument (f) is a function that generates a ball Behaviour given a ball configuration, and the

third argument (b) is the initial ball configuration. Thus, resetBall ev elasticBall b would

behave as elasticBall b until an event occurs in ev , at which point it recursively starts resetBall

using the same ev but a new initial ball configuration.

However, this is not how resetBall behaves. When the first reset occurs, the Event is reset

along with the ball Behaviour . Consequently, the first event occurrence will trigger the reset

repeatedly, and any occurrences thereafter will be ignored. For example, if the first event occurs

after 3 seconds, then the reset will be triggered every 3 seconds, regardless of any subsequent

events. To overcome this, there needs to be a way of retaining the event signal when a structural

switch occurs, rather than restarting it. This is addressed in the next section.

3.3.5 Retaining Signals

It may seem that using untilB ′ in place of untilB in the definition of resetBall would solve

the problem. However, while it would lead to the correct behaviour from the event signal,

it would produce an incorrect new ball Behaviour (as discussed for elasticBall). Thus both

capabilities are needed. However, rather than also providing combinators of the untilB ′ variety,

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 21

CFRP variants addressing this problem provide a family of runningIn primitives that allow

Behaviours and Events to start running before they are switched-in. This is achieved by fixing

the start time of the Behaviour or Event such that when it is switched-in its start time does

not change. In effect, the runningIn primitives coerce Behaviours and Events from signal

generators to signals, thus providing the programmer with both first-class signals and first-

class signal generators. These signals (running Behaviours or Events) can then be used in the

definitions of other Behaviours and Events that have not yet been switched-in.

There are four functions in the runningIn family, one for each possible pair combina-

tion of Event and Behaviour . First consider runningInBB , which starts a Behaviour inside

a Behaviour :

runningInBB : Behaviour A → (Behaviour A → Behaviour B) → Behaviour B

runningInBB beh f ≈ λ t0 → f (λ → beh t0) t0

The first argument (beh) is the Behaviour to start running. The second argument (f) is a

function that uses this Behaviour (which is really a signal, despite the lack of type distinction)

to define another Behaviour . The semantics say that beh can be used in the definition of the

second Behaviour , but that whenever beh is switched in, the local start time is ignored and the

start time of the runningInBB expression is used instead.

The runningIn primitive that is needed for the Bouncing-Ball example is runningInEB ,

which starts an Event inside a Behaviour :

runningInEB : Event A → (Event A → Behaviour B) → Behaviour B

runningInEB ev f ≈ λ t0 → f (λ te → dropWhile ((< te) ◦ fst) ◦ ev t0) t0

The semantics are similar to runningInBB , except that dropWhile ((< te) ◦ fst) is applied to

the running Event . This is because the meaning of an Event is all event occurrences between

the start time and the sample time (whereas a Behaviour is only concerned with the sample

time). While the Event should start running before it is switched-in, only events that occur

after it is switched-in should be observable.

A combinator that replaces a Behaviour whenever an event occurs in a specified event signal

can now be defined as follows:

replaceBeh : Event E → Behaviour A → (E → Behaviour A) → Behaviour A

replaceBeh ev beh f = runningInEB ev (λ rev → replaceBehAux rev beh)

where

replaceBehAux : Event E → Behaviour A → Behaviour A

replaceBehAux rev beh ′ = untilB beh ′ rev (λ e → replaceBehAux (notYet rev) (f e))

Initially, replaceBeh ev f beh behaves as beh. Whenever an event occurs in ev , the switching

function f is applied to the value of that event to produce a Behaviour . That Behaviour is then

switched-in, and the old Behaviour switched-out. The use of runningInEB prevents ev from

being restarted. Note that the use of notYet in the recursive call to replaceBehAux is crucial.

Without it, the switched-in untilB combinator would immediately switch again, leading to an

infinite chain of switching at that time point.

Returning to the Bouncing-Ball example, resetBall can now be correctly defined as follows:

resetBall : Event Ball → (Ball → Behaviour Ball) → Ball → Behaviour Ball

resetBall ev f b = replaceBeh ev f (f b)

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 22

3.4 Unary FRP

Section 3.2.2 contained a conceptual definition of signal functions that map a single signal to

a single signal. FRP models that take such signal functions as the central reactive abstrac-

tion will be referred to as Unary FRP (UFRP). The Yampa implementation [92] is based on

UFRP. This section introduces a basic UFRP language, and then gives some examples of UFRP

programming.

3.4.1 Signals, Signal Functions, and Events

The conceptual model of UFRP is based directly on the signals and signal functions introduced

in Section 3.2:

Signal : Set → Set

Signal A ≈ Time → A

SF : Set → Set → Set

SF A B ≈ Signal A → Signal B

Signal functions are abstract first-class entities in the UFRP language. Signals, on the other

hand, are second-class: they exist only indirectly through the signal functions.

However, the UFRP model does not lend itself well to having an additional signal type for

discrete-time signals, as then signal-function variants for each possible input/output combina-

tion of continuous-time and discrete-time signals would be needed. Instead, UFRP embeds

discrete-time signals within continuous-time signals. This is achieved by an abstract Event

type, which is conceptually a (time-ordered and finite) list of event occurrences:

Event : Set → Set

Event A ≈ List (Time × A)

A discrete-time signal carrying elements of type A is then represented by a signal of type

Signal (Event A). The (conceptual) value of such a signal at a point in time is the list of event

occurrences up to that time point.

In Yampa, the Event type is implemented as an abstract option type:

data Event (A : Set) : Set where

noEvent : Event A

event : A → Event A

Thus, a signal of type Signal (Event A) would have a value of noEvent whenever the discrete-

time signal is not defined, and a value of event v whenever the discrete-time signal is defined

with value v . This is unsuitable for use at the semantic level, as it would allow dense event

signals: signals where events are always occurring over a non-zero interval. However, it is

sufficient to define the primitives in Yampa’s discretely sampled implementation (which only

approximates the ideal semantics).

3.4.2 Primitive Signal Functions

In a similar manner to CFRP, UFRP provides lifting functions that lift values and functions to

the reactive level:

constant : B → SF A B

constant b ≈ λ s t → b

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 23

lift : (A → B) → SF A B

lift f ≈ λ s → f ◦ s

Note that constant is completely polymorphic in its input signal. As discussed in Section 3.2.5,

this is a way of embedding what are really signal generators into a signal-function setting.

In CFRP, notYet , integral and when are host-language functions operating on Events and

Behaviours . Here, they are signal functions :

notYet : SF (Event A) (Event A)

notYet ≈ λ s → dropWhile ((6 0) ◦ fst) ◦ s

integral : SF R R

integral ≈ λ s t1 →
∫
t1

0
(s t) dt

when : (A → Bool) → SF A (Event A)

The definition of when is again omitted as it is substantially more involved than the other

definitions in this section.

3.4.3 Primitive Routing Combinators

Signal functions are abstract entities in UFRP, and thus (outside of the conceptual level) they

cannot be applied or composed as host-language functions. Instead, UFRP languages provide a

set of routing combinators that can be used to construct whatever network structure is desired.

The UFRP variant defined here provides two routing combinators as primitives. The first

combinator is the sequential composition (denoted≫) of two signal functions:

≫ : SF A B → SF B C → SF A C

sf 1 ≫ sf 2 ≈ sf 2 ◦ sf 1

The second combinator (denoted &&& and pronounced “fan-out”) applies two signal functions

to the same input in parallel:

&&& : SF A B → SF A C → SF A (B × C)

sf 1 &&& sf 2 ≈ λ s t → (sf 1 s t , sf 2 s t)

Data-flow combinators such as these are often easiest to understand graphically: see Figure 3.1.

3.4.4 Switching Combinators

UFRP variants provide families of switching combinators that allow structural dynamism to be

expressed. New first-class signal functions can be created and switched-in, and running signal

functions can be switched-out. [92]

Here, only two primitive switching combinators are considered. The first is called switch:

switch : SF A (B × Event E) → (E → SF A B) → SF A B

This combinator takes two arguments, which are called the subordinate signal function and the

switching function. Informally, the behaviour of switch is as follows. The subordinate signal

function is applied to the input signal until the first occurrence in the output event signal. The

output of the switching combinator is taken from the first component of the subordinate’s output

until this point. The switching function is then applied to the value of the event occurrence

to produce a residual signal function. The residual signal function is then applied to the input

signal, starting at the time of the event occurrence, and henceforth the output of the switching

combinator is taken from the residual signal function.

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 24

Figure 3.1 UFRP primitive combinators

&&&

sf
2

sf
1

>>>

sf
2

sf
1

freeze

sf

sf

switch

?

sf

To express this formally, the following (semantic level) function is useful:

advance : Time → Signal A → Signal A

advance d s t = s (t + d)

Intuitively, advance d s time-shifts the signal s forward in time by an amount d . This is needed

because, unlike CFRP which had signal generators and start times, signal functions in UFRP

live in their own local time frame.

Local Time: The time since a signal function was applied to its input signal.

Note that a signal function is applied to a signal either when the entire system starts, or when

it is switched-in.

The switch combinator can now be defined as follows:

switch : SF A (B × Event E) → (E → SF A B) → SF A B

switch sf f ≈ λ s t → let (b, ev) = sf s t

in case dropWhile (λ (te,) → te < 0) ev of

[] → b

(te, e) :: → (f e) (advance te s) (t − te)

The key point is that the residual signal function (f e) only “starts” at the moment of switching

(te). Thus, semantically, the input signal (s) has to be advanced by an amount te to shift it into

the local time frame of the residual signal function. Consequently, the residual signal function

only observes the input signal after the moment of switching (inclusive). The sampling time is

then reduced (t − te) to shift the output signal back into the external time frame. The use of

dropWhile serves the same purpose as in runningInEB in CFRP (Section 3.3.5): it hides any

events that occurred before this signal function was switched-in.

Note that the value of the output signal at the moment of switching is taken from the

residual signal function. An alternative design decision would be to have the output at that

moment be taken from the subordinate signal function. UFRP provides a switching combinator

called dswitch that has such behaviour:

dswitch : SF A (B × Event E) → (E → SF A B) → SF A B

dswitch sf f ≈ λ s t → let (b, ev) = sf s t

in case dropWhile (λ (te,) → (te < 0) ∨ (te > t)) ev of

[] → b

(te, e) :: → (f e) (advance te s) (t − te)

This is the same as the definition of switch, except that if the first event occurrence is at the

sample time then it is discarded. Thus, at the sample time, the output is defined to be that of

the subordinate signal function (b).

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 25

3.4.5 Freezing Signal Functions

UFRP also allows “running” signal functions to be “frozen” (transformed back into first-class

entities, maintaining any accumulated internal state) [92]. These frozen signal functions can

then be switched-in later using switching combinators. Here, only one freezing combinator is

considered:

freeze : SF A B → SF A (B × SF A B)

Informally, freeze applies its subordinate signal function to the input signal to produce an

output signal, but also emits a “frozen” copy of the (aged) subordinate signal function as an

additional output. This frozen signal function is a first-class entity at the functional level, but

is one that has already received some of its input.

An alternative way of looking at this is that freeze allows execution of a signal function to

be suspended. Then, later, the frozen signal function can be resumed by switching it in. An

example of this can be found in Section 7.4.

Defining this formally requires another (semantic level) function:

splice : Signal A → Signal A → Time → Signal A

splice s1 s2 tx t | t < tx = s1 t

| t > tx = s2 (t − tx)

Intuitively, splice composes two signals temporally, ending the first signal, and starting the

second, at the given time (tx).

The freeze combinator can now be defined as follows:

freeze : SF A B → SF A (B × SF A B)

freeze sf ≈ λ s t → (sf s t , λ s′ → advance t (sf (splice s s′ t)))

Note that the frozen signal function will only have processed input strictly before the time point

at which it is frozen.

3.4.6 Example UFRP Programming

This section demonstrates UFRP programming by defining some library signal functions and

combinators. Note that this is no longer at the conceptual level: thus signal functions are now

abstract, and signals are not first class.

Initialised Integration

An initialised integral is defined similarly to CFRP:

iIntegral : R → SF R R

iIntegral x = integral ≫ lift (+ x)

Routing Combinators

As previously mentioned, UFRP provides a set of routing combinators to compose signal func-

tions. This set of combinators can be defined using lift ,≫ and &&&:

identity : SF A A

identity = lift id

sfFst : SF (A × B) A

sfFst = lift fst

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 26

Figure 3.2 Additional UFRP routing combinators

forkFirst

sf

identity sfFst sfSnd

toSnd

sf

toFst

sf

sfFirst

sf

sfSecond

sf

forkSecond

sf

sfSwap

∗∗∗

sf
2

sf
1

sfFork

sfSnd : SF (A × B) B

sfSnd = lift snd

sfSwap : SF (A × B) (B × A)

sfSwap = lift swap

sfFork : SF A (A × A)

sfFork = lift fork

toFst : SF A C → SF (A × B) C

toFst sf = sfFst ≫ sf

toSnd : SF B C → SF (A × B) C

toSnd sf = sfSnd ≫ sf

∗∗∗ : SF A C → SF B D → SF (A × B) (C × D)

sf 1 ∗∗∗ sf 2 = toFst sf 1 &&& toSnd sf 2

sfFirst : SF A B → SF (A × C) (B × C)

sfFirst sf = sf ∗∗∗ identity

sfSecond : SF B C → SF (A × B) (A × C)

sfSecond sf = identity ∗∗∗ sf

forkFirst : SF A B → SF A (B × A)

forkFirst sf = sfFork ≫ sfFirst sf

forkSecond : SF A B → SF A (A × B)

forkSecond sf = sfFork ≫ sfSecond sf

These combinators are best understood graphically: see Figure 3.2.

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 27

Additional Switching Combinators

The following switching combinator will be useful for the Bouncing-Ball example:

switchWhen : SF A B → SF B (Event E) → (E → SF A B) → SF A B

switchWhen sf sfe = switch (sf ≫ forkSecond sfe)

Essentially, switchWhen is switch specialised to the case where the event signal that controls

the switch only depends on the output of the subordinate signal function. It differs from switch

in that the subordinate signal function has been split into two: one to produce the output and

one to produce the event.

Recall from Section 3.3.5 that it is sometimes necessary to use notYet when defining a

switching combinator recursively, to prevent an infinite chain of switching. Note that this

was not required in the definition of elasticBall , despite the recursive call, because the when

primitive never produces an event at the moment it is switched-in. As can be imagined, this

can be a subtle source of bugs in FRP programs. To address this, UFRP provides a recursive

switching combinator that incorporates the notYet primitive in its definition:

rswitch : SF A (B × Event E) → (E → SF A (B × Event E)) → SF A B

rswitch sf f = switch sf (λ e → rswitch (f e ≫ sfSecond notYet) f)

The switching function of rswitch produces a new subordinate signal function that replaces the

existing subordinate signal function. This differs from switch, where the switching function

produces a residual signal function that replaces the entire switching combinator. The intent is

that any recursive switching should be defined using rswitch, rather than by using switch and

host-language recursion.

A recursive variant of switchWhen is also useful. However, there are several possible mean-

ings for an rswitchWhen combinator: Whenever a structural switch occurs, the signal function

that generates the event could either restart, continue running, or be replaced by a newly

computed signal function. Here, the first option is chosen:

rswitchWhen : SF A B → SF B (Event E) → (E → SF A B) → SF A B

rswitchWhen sf sfe f = rswitch (sf ≫ forkSecond sfe) (λ e → f e ≫ forkSecond sfe)

Finally, an equivalent of the replaceBeh combinator (Section 3.3.5) can be defined as follows:

replace : SF A B → (E → SF A B) → SF (A × Event E) B

replace sf f = rswitch (sfFirst sf) (λ e → sfFirst (f e))

Note that the use of rswitch means that there is no need to use notYet in this definition.

Bouncing-Balls Revisited

The section concludes by adapting the Bouncing-Ball example from Section 3.3.4 to the setting

of UFRP.

First, fallingBall is re-defined as a signal function:

fallingBall : Ball → SF A Ball

fallingBall (h, v) = constant (−g) ≫ iIntegral v ≫ forkFirst (iIntegral h)

This code is less clear than its CFRP equivalent. The graphical representation in Figure 3.3

may be helpful.

Programming with routing combinators is often more awkward than just applying functions

to arguments, and in practice some convenient syntax is usually provided by an implementation

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 28

Figure 3.3 A signal function network modelling a falling ball

fallingBall (h, v)
∫

∫
−g +v

+h

to alleviate the burden. For example, Yampa, which is structured using Arrows [59], makes use

of Paterson’s arrow notation [101]. The advantage of such notation is that it allows pointwise

programming; that is, intermediate signals can be named. In this notational style, fallingBall

could be defined as follows:

fallingBall : Ball → SF A Ball

fallingBall (h0, v0) = proc → do

v ← iIntegral v0 −≺ −g

h ← iIntegral h0 −≺ v

identity −≺ (h, v)

The basic idea is that input signals are placed on the right, signal functions appear in the

middle, and output signals are bound to identifiers on the left. The overall input signal appears

after proc (in this case an underscore, as it is not used), and the overall output is that produced

by the signal function on the final line. The signal function definitions may not depend on the

signals. For a more detailed explanation of the notation in the context of FRP, consult Nilsson

et al. [92].

The remaining ball definitions are straightforward:

detectBounce : SF Ball (Event Ball)

detectBounce = when detectImpact

elasticBall : Ball → SF A Ball

elasticBall b = rswitchWhen (fallingBall b) detectBounce (fallingBall ◦ negateVel)

inelasticBall : Ball → SF A Ball

inelasticBall b = switchWhen (fallingBall b) detectBounce (λ → constant (0, 0))

resetBall : (Ball → SF A Ball) → Ball → SF (A × Event Ball) Ball

resetBall f b = replace (f b) f

3.4.7 Single-Kinded Signals

The UFRP model defined in Section 3.4.1 represents discrete-time signals by embedding an

abstract Event type in continuous-time signals. This approach is called single-kinded UFRP, as

there is really only one signal kind. This uniform treatment of continuous-time and discrete-time

signals fits well with the idea of signal functions being the core concept and there only being one

kind of signal function. However, making Event first class allows a “mischievous” programmer

to violate the conceptual model of events, such as by defining dense event occurrences (an infinite

number of occurrences over a finite time interval). Consequently, an implementation cannot

safely carry out optimisations that are predicated on events occurring non-densely, even though

that is the intent. The drawbacks of single-kindedness are discussed further in Section 4.1.1.

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 29

3.5 Advantages of a Signal-Function Abstraction

Of the two FRP variants introduced thus far, CFRP is based around first-class signal generators,

whereas UFRP is based around a first-class signal-function abstraction. This thesis develops

and studies a UFRP-inspired FRP variant called N-ary FRP, where signal functions are the

primary notion and signals are secondary. To motivate this design choice (as opposed to a more

CFRP-like language), this section contains a brief discussion of some of the advantages that

this approach offers.

3.5.1 Implementation Implications

Implementing first-class signals efficiently in their full generality is challenging [36, 37, 63].

The essential difficulty is that signals are time-varying entities occurring at the functional level

where everything notionally must be time-invariant so as not to break referential transparency.

The key to solving this apparent contradiction is to adopt the view that the signal abstraction

represents the entire signal, which is time invariant. However, if signals are truly first-class,

then they can be put into data structures or be part of closures, and be kept there for a long

time without any connection to the outside world. Yet if space and time leaks are to be avoided,

signals have to be implemented as truly time-varying values by updating them as soon as there

is a change [36, 100].

To my knowledge, all practically useful FRP implementations supporting first-class signals

resort to imperative techniques to address this. For example, runningIn was implemented by

updating the running Behaviour or Event as a side effect (using Haskell’s unsafePerformIO) of

consuming the produced signal (that need not depend on the running Behaviour or Event at all

points of time; in fact, normally would not). For another example, the latest version of Elerea

(Version 2) maintains a pool of (weak) references to all active stateful signal computations

to enable all of them to be updated, regardless of whether or not the result of an individual

computation is currently being used, by making a sweep over the pool at every time step [100].

On the other hand, Version 1 of Elerea avoids the problem by simply not updating any signals

that are not contributing to output at the current execution step, but this has the disadvantage

of breaking referential transparency [99].

In contrast, an approach based on signal functions can be implemented remarkably simply

and purely functionally [92]. In essence, a signal function is just a state transition function

taking an input sample and current state to an output sample and new state. As the composition

of such state transition functions is another state transition function, the entire system just

becomes a state transition function. Signal functions, like signal generators, are time-invariant,

so giving them first-class status at the functional level is trivial.

Another issue concerns sharing. As signal generators essentially are functions mapping a

start time to a signal, the normal lazy evaluation machinery of a language like Haskell is not

enough to ensure that signals generated by the same generator applied to the same start time

are shared. This leads to a lot of redundant computation unless addressed, in particular for

recursively defined signal generators. The usual solution is to employ some form of memoisation

(again using imperative techniques) [36]. The memoisation is usually done internally, hidden

by the abstractions; although Version 2 of the Elerea implementation provides an explicit

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 30

memoisation primitive as memoising everything is usually redundant and has a negative impact

on performance [100]. In contrast, with signal functions it is easy to arrange that each signal

sample is computed exactly once and distributed to where it is needed, thus avoiding any risk

of lost sharing.

Of course, what matters to an end user is not the complexity of an implementation, but

the facilities provided, how easy they are to use, and the quality of the performance. As to the

comparative performance of FRP implementations based on signals or signal functions, there

is not yet a simple answer. Lots of research, implementation, and practical evaluation is still

needed.

However, note that Yampa, despite having scalability issues (see Section 3.5.2), has proved

to be quite efficient for many applications as witnessed by video-game implementations [20, 27]

and the Yampa synthesiser [42]. It seems likely that this is mainly due to the implementation

being purely functional, and functional compilers being good at compiling purely functional

code. Moreover, the work on Causal Commutative Arrows [75, 77] has shown that static signal

function networks can be executed very efficiently.

3.5.2 Routing

An FRP program defines a synchronous data-flow network. The nodes of this network are

signal functions, regardless of whether signals or signal functions are first-class abstractions in

the language used to define the network. In languages with first-class signals, the routing of

the network is defined at the functional level by host-language functions, hiding it from the

reactive level. On the other hand, a language with a first-class signal-function abstraction can

construct the network using routing combinators that operate on signal functions. This allows

all routing to be defined at the reactive level, giving much greater scope for optimisation than

when the routing is hidden in the host language. However, the UFRP model, despite having

first-class signal functions, is still insufficient.

In UFRP, signal functions have only a single input and a single output. Consequently, the

only way to represent signal functions operating on (or returning) more than one signal is to

exploit the fact that a product of signals is (in this model) isomorphic to a single signal carrying

a product of elements of the constituent signals. For example, a signal function that maps a

pair of signals carrying integers to another pair of signals carrying integers has type:

SF (Z,Z) (Z,Z)

This means that there is no distinction (and cannot be) between a signal that carries a pair of

values, and one that is the result of pairing two independent signals.

Moreover, exploiting this isomorphism is often the only way to route signals between signal

functions. Signals are grouped together into a single signal according to the structure of signal

function composition, and then, at the functional level, values of this signal are regrouped so

as to enable decomposition according to the structure of the receiving signal function. This

approach hides the routing from the reactive level, and creates artificial interdependencies be-

tween independent signals. This makes it difficult to implement the UFRP model in a way

that scales well, such as through direct point-to-point communication between signal func-

tions or minimisation of redundant computation through change propagation (as proposed in

Chapter 8).

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 31

The UFRP model certainly does not rule out all optimisation opportunities, as evidenced

by the latest Yampa implementation [90]. However, overcoming these limitations in a more

comprehensive and systematic way necessitates internalising the routing at the reactive level,

as well as introducing n-ary signal functions that truly map multiple independent input signals

to multiple independent output signals. It is for these reasons that the N-ary FRP model has

been developed (Chapter 4), which is based around such n-ary signal functions.

3.5.3 Switching

Recall the replace combinator from UFRP (Section 3.4.6). Unlike the replaceBeh combinator

from CFRP (Section 3.3.5), its definition makes clear which signals are restarted at the moment

of switching, and which are maintained. Primarily, this is because of the modular nature of

signals functions: they are parametrised on their input, which is explicitly received from some

external source. For switching combinators, this makes a clear distinction between internal

signals (produced by subordinate or residual signal functions), which exist in their local time

frame, and external signals (the input), which exist in an external time frame and are unaffected

by the structural switch. In CFRP, this was not possible without using the runningIn primitive

to coerce signal generators into signals.

As well as being more complicated, the runningIn primitive also gives rise to a number

of theoretical and practical problems. In particular, it leads to confusion between signals and

signal generators (which are both typed as Behaviours), and can easily lead to ill-defined

programs when writing recursive Behaviours. A detailed discussion of these issues can be

found in Courtney [25].

3.5.4 Signal Function Objects

By making signal functions a first-class abstraction, an FRP implementer has great freedom

in choosing their representation and, subsequently, in exploiting information manifest in this

representation. For example, Yampa encodes simple properties about signal functions in their

representation, which in favourable circumstances allows compositions of signal functions to be

fused for better performance [90]. One of the goals of the present work is to identify properties

of signal functions that could enable such optimisation in a more systematic and formally

justifiable manner (Chapter 8).

Similarly, as will be discussed in chapters 7 and 9, being able to associate additional in-

formation with signal functions at the type level allows certain safety guarantees, such as the

absence of instantaneous feedback loops, to be enforced statically. If signal functions were ordi-

nary host-language functions on signals, then it would not be possible to take such information

into account if it truly relates to the function as opposed to its argument or result.

As described in Section 3.4.5, UFRP allows a switched-in signal function to be “frozen”;

that is, switched-out of the network and returned to a first-class entity at the functional level,

maintaining the internal state it had at the moment it was switched-out. At some later point,

the frozen signal function can be switched-in again. This is a powerful capability, forming the

basis of Yampa’s collection-based switching primitives that allow highly dynamic signal function

networks to be described. The same fundamental mechanism is also used in the virtual-reality

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 32

project FRVR [12] where, through a Yampa extension, it is used to implement an editor undo

facility by capturing the system state as frozen signal functions at various points in time. This

allows interaction to resume from any saved point at a later stage, thereby undoing the effects

of any intervening interaction (see Section 7.4 for an example of this). It would seem hard to

replicate the freezing functionality in a setting with first-class signals.

3.5.5 Other Applications

Signal functions also have applications beyond FRP, making them interesting to study in their

own right. The connections to the synchronous data-flow languages, and to modelling and

simulation languages such as Simulink, were mentioned in Section 1.1. Functional Hybrid

Modelling (FHM) [93] is an approach to modelling and simulation, in part inspired by FRP,

where signal functions are generalised to relations on signals. For efficient simulation, while still

allowing dynamism, these relations are compiled to native simulation code using the LLVM just-

in-time compiler [44]. As the notions of signal relations and signal functions are related, and

as it would be desirable to have signal functions in the FHM setting, the work in this thesis

is potentially of use for FHM. Conversely, FHM’s just-in-time compilation strategy could be

applied in FRP implementations.

3.6 Conclusions

The notion of a signal is central to any FRP instance. As discussed, it is crucial to be able to

start the computation of a signal at any desired point in time in order to support dynamism,

both for reasons of expressivity and to avoid space and time leaks. This suggests a notion

of signal generators as the central first-class abstraction. But first-class generators alone are

not enough: the ability to refer to existing signals from within the definition of a generator

is needed as well, suggesting that signals too should be first-class entities. One approach to

overcoming this is the runnningIn primitive of CFRP, even though a signal in that particular

formulation ends up being disguised as a Behaviour or Event ; that is, as a signal generator.

As a more recent example, Elerea also provides both signals and signal generators as first-class

abstractions, but this time carefully distinguished at the type level [99, 100]. Either way, once

signals are first-class entities, signal functions come for free.

However, as seen with Unary FRP, an alternative is to make signal functions the central

first-class abstraction. They then play the role of generators, as a signal will be generated

whenever a signal function is applied to a signal, either when the system first starts or when

a new signal function is switched-in. Furthermore, signal functions are parametrised on their

input, allowing residual signal functions to receive already existing signals. Thus neither signals

nor signal generators need to be first-class.

So, is it better to have first-class signals (and generators) or first-class signal functions?

There are pros and cons to each, many related to the specifics of a particular setting (embedded

or stand-alone implementation, the facilities of the host language if an embedded approach is

chosen, intended application area, etc.), and some somewhat subjective. Moreover, they are

not mutually exclusive; for example, Grapefruit provides first-class signal and signal-function

CHAPTER 3. FUNCTIONAL REACTIVE PROGRAMMING 33

abstractions [63]. Yet, as discussed in Section 3.5, making signal functions first class has many

advantages—in particular, it allows allows for a stricter separation between the functional and

reactive layers. However, this is not to say that CFRP-like approaches are not viable; recent

FRP implementations [23, 37, 63, 100] have shown that they are.

Chapter 4

N-ary FRP

This chapter describes a new FRP language called N-ary FRP. Section 4.1 defines the underlying

conceptual model; Section 4.2 defines the primitives of the language in terms of that conceptual

model; Section 4.3 gives some examples of N-ary FRP programming; and Section 4.4 contains

a discussion about the totality of the language.

4.1 N-ary FRP Conceptual Model

As discussed in Section 3.5.2, the single-kinded UFRP model, while both simple and expressive,

has a number of inherent problems, practical as well as conceptual. This section discusses

some further issues with this model, and then introduces a refined conceptual model based on

multi-kinded n-ary signal functions. This model, which underlies N-ary FRP, will serve as the

foundation for the rest of this thesis.

4.1.1 Multi-Kinded Signals

As discussed in Section 3.2.3, many versions of FRP cater for the implementation of hybrid

systems by supporting multi-kinded signals. On the other hand, in single-kinded FRP, discrete-

time signals are defined in terms of continuous-time signals. As discussed in Section 3.4.7, this

does not respect the conceptual model of events, and can lead to semantic infelicities.

Another problem of single-kinded signals is that some operations need to be done differently

on the two kinds of signal in order to maintain central properties of the signal kind in question.

For example, in a typical sampled implementation, it may be necessary to insert or delete

samples of continuous-time signals to mediate between different sampling rates. However, for

event signals, duplicating or eliminating event occurrences would often be disastrous. There

may be specific versions of such operations that work correctly for events, but as any operation

that works on polymorphic signals is also applicable to event signals, there is nothing to enforce

that these specific operations are used in place of the generic ones. An example of this issue is

discussed in Section 5.4.

Furthermore, many continuous-time signals are piecewise constant (mainly because of in-

teraction with event signals). However, if all signals are continuous-time signals, without any

34

CHAPTER 4. N-ARY FRP 35

further guaranteed properties, then there is not much that can be gained from this observation.

This is all in sharp contrast to multi-kinded FRP that makes a strict distinction between

continuous-time and discrete-time signals, allowing the differences to be used for both gaining

semantic precision and better implementation.

Consequently, it is desirable to make a clear type-level distinction between different kinds

of signal. To this end, N-ary FRP identifies three distinct signal kinds:

• Continuous Signal : A general continuous-time signal that is always defined.

• Event Signal : A discrete-time signal only defined at an at-most-countable set of points in

time. Each time point at which an event signal is defined is known as an event occurrence.

• Step Signal : A continuous-time piecewise-constant signal that is always defined. Its value

only changes at an at-most-countable set of points in time.

4.1.2 N-ary Signal Functions

UFRP signal functions have only a single input and single output. As discussed in Section 3.5.2,

this approach hides the network routing from the reactive level, and creates artificial interde-

pendencies between independent signals. This limits the implementation techniques and opti-

misations that can be applied.

To address these routing limitations, and to cater for multi-kinded signals, n-ary signal

functions are introduced: signal functions that can have more than one input or output. These

n-ary signal functions are defined on signal vectors, conceptually products of heterogeneous

signals, rather than signals.

The crucial point is that the different kinds of signal, and vectors of such signals, are defined

only as an integral part of the signal-function abstraction. In this model, signals (and signal

vectors) are second class and completely internalised at the reactive level. Thus there cannot

be signals of signals, nor signals of signal vectors. This means that the N-ary FRP implementer

has great freedom in choosing the representations of signals, signal functions, and the routing

between them; and in exploiting those choices.

4.1.3 Signal Vector Descriptors

First, an auxiliary notion is required. A signal vector descriptor is a type-level value that

describes key characteristics of a signal vector. Signal vector descriptors only exist at the type

level of the N-ary FRP language, and are only used to index signal-function types.

The characteristics of interest are the kind of the signal, and the type of the values carried

by the signal. Thus one descriptor is introduced for each signal kind, each parametrised on the

value type, and a pairing descriptor to construct vectors of more than one signal:

data SVDesc : Set where

C : Set → SVDesc -- Continuous signal

E : Set → SVDesc -- Event signal

S : Set → SVDesc -- Step signal

, : SVDesc → SVDesc → SVDesc -- product of signals

CHAPTER 4. N-ARY FRP 36

4.1.4 Refined Signals and Signal Functions

The conceptual definition of signals is now refined as follows:

• Continuous signals remain functions from time to value, as before.

• Event signals are modelled as an optional initial event and a function from time to a

finite list of event occurrences. These occurrences are represented as pairs of a (strictly

positive) time delta and a value.

• Step signals are modelled as an initial value and a function from time to a finite list of

changes. These changes are represented as pairs of a (strictly positive) time delta and a

value.

The time-delta–value pairs will be referred to as occurrences. Lists of occurrences will be

referred to as change lists, and functions mapping time to change lists will be referred to as

change prefixes. Also, the type T ime+ will denote the set of strictly positive time, with ∆t a

synonym for use when a (strictly positive) time delta is intended:

T ime+ : Set

T ime+ ≈ {t ∈ R | t > 0}

∆t : Set

∆t = T ime+

ChangeList : Set → Set

ChangeList A = List (∆t × A)

ChangePrefix : Set → Set

ChangePrefix A = Time → ChangeList A

Signal vectors are thus defined:

SigVec : SVDesc → Set

SigVec (C A) = Time → A

SigVec (E A) = Maybe A × ChangePrefix A

SigVec (S A) = A × ChangePrefix A

SigVec (as, bs) = SigVec as × SigVec bs

Finally, signal functions are refined to operate on signal vectors:

SF : SVDesc → SVDesc → Set

SF as bs ≈ SigVec as → SigVec bs

4.1.5 Why Change Prefixes?

The change-prefix representation is chosen because it ensures that the model is causal, and that

occurrences are countable and not simultaneous.

To ensure that the model is causal, a change prefix maps a time to a finite list of occurrences,

up to that point in time. Crucially, this means that at any time point, the times and values

of all occurrences up to that time point can be computed without knowing the times of future

occurrences. If just a change list was used to represent Event and Step signals, then computing

all occurrences up to a time point would require knowing the time of the first occurrence after

that time point, because only after that occurrence time had been compared with the current

time could it be determined that it had not yet occurred.

CHAPTER 4. N-ARY FRP 37

As change lists are required to be finite, the change prefix representation also ensures that

the number of occurrences is at most countable: there may be countably infinitely many in the

limit as time tends towards infinity, but only a finite number up to any specific point.

Using strictly positive time deltas ensures that there cannot be several occurrences simulta-

neously. However, a consequence of this is that a change list cannot represent an occurrence at

the first point in time (referred to henceforth as time0). A Step signal is thus a change prefix

paired with an initial value, while an Event signal is a change prefix paired with an optional

initial event occurrence.

However, some additional constraints are required that the change prefix definition does not

enforce:

Stable: The change list produced by a change prefix at time t must be the same as the prefix

up to t of all change lists produced by the same change prefix at any time after t .

Non-Divining: The change list produced at any sample time must not extend beyond that

sample time.

Intuitively, stable means that “history must not be re-written”, and non-divining means

that it must not be possible to “see into the future”. A change prefix is said to be coherent if

it satisfies both constraints. This could be incorporated into the change-prefix data structure,

but that would substantially complicate the definitions in this thesis. Thus, it is instead stated

as a side condition that is required to hold for all change prefixes in the model:

Coherent : ChangePrefix A → Set

Coherent cp = ∀ t1 t2 → t1 6 t2 → cp t1 ≡ takeIncl t1 (cp t2)

The takeIncl t function takes the greatest prefix of a change list such that the sum of its time

deltas is at most t . Its definition can be found in Appendix B.1. When t2 is greater than t1 this

ensures that the change prefix is stable; when t1 and t2 are equal this ensures that the change

prefix is non-divining.

4.2 N-ary FRP Primitives

The primitives of an FRP language can be divided into:

• routing primitives, which express static network structure;

• dynamic combinators, which express dynamic network structure;

• lifting functions, which lift functions from the functional level to the reactive level by

pointwise application (for stateless signal processing);

• primitive signal functions, which perform stateful signal processing.

This section introduces the primitives of N-ary FRP, giving their semantics in terms of the

conceptual model from Section 4.1. When the semantics of a signal function is particularly

verbose, only its type is given and its definition is relegated to Appendix B.

CHAPTER 4. N-ARY FRP 38

Figure 4.1 N-ary FRP routing primitives

&&&

sf
2

sf
1

>>>

sf
2

sf
1

identity

sfFst sfSnd

4.2.1 Static Routers

As discussed in Section 3.5.2, a goal of N-ary FRP is to express all routing at the reactive level.

To this end, there is a set of five (Arrows [59] inspired) primitives that exist purely for routing

purposes (see Figure 4.1). All routing should be expressed using these primitives (as opposed to

lifting routing functions from the functional level) so that an implementation can fully exploit

this information.

Remember: an implementation of N-ary FRP is not required to be structured in a way

that corresponds directly to the conceptual definitions below. All that is required is that the

semantics of the implemented routing corresponds to the conceptual model.

The routing primitives are further subdivided into three atomic routers (which are signal

functions) and two routing combinators (which are signal-function combinators). The atomic

routers are defined as follows:

identity : SF as as

identity ≈ id

sfFst : SF (as, bs) as

sfFst ≈ fst

sfSnd : SF (as, bs) bs

sfSnd ≈ snd

The routing combinators are taken from UFRP (see Section 3.4.3):

≫ : SF as bs → SF bs cs → SF as cs

sf 1 ≫ sf 2 ≈ sf 2 ◦ sf 1

&&& : SF as bs → SF as cs → SF as (bs, cs)

sf 1 &&& sf 2 ≈ λ s → (sf 1 s, sf 2 s)

This set of primitives is minimal in the sense that any acyclic static network structure can

be described by them, yet none of these primitives can be defined in terms of the other four.

There are of course other sets of minimal combinators that can likewise express such routing.

In Section 4.3.1 the expressiveness of these primitives is demonstrated by using them to define

the set of UFRP routing combinators from Section 3.4.6.

To express cyclic routing (feedback), an additional routing combinator is required. Feedback

is important facility in FRP (and synchronous data-flow generally). However, it is important

not to introduce ill-defined feedback that could cause an implementation to loop at run-time.

Ideally, the language should disallow ill-defined feedback without enforcing conservative restric-

tions on the well-defined feedback that is allowed. This is not a trivial concern, so introducing

CHAPTER 4. N-ARY FRP 39

feedback combinators is postponed until Chapter 7. Until then, only acyclic networks will be

considered.

4.2.2 Dynamic Combinators

The N-ary FRP language defined in this thesis contains two dynamic combinators. These are

the switch and freeze combinators from UFRP (sections 3.4.4 and 3.4.5), but refined for the

N-ary FRP model. It should also be possible to extend N-ary FRP with further dynamic

combinators along the lines of Yampa’s collection-based switches [92], but this remains the

subject of future work.

switch : SF as (bs,E A) → (A → SF as bs) → SF as bs

freeze : SF as bs → SF as (bs,C (SF as bs))

The formal definitions of these signal functions are somewhat more involved in the N-ary FRP

model (see Appendix B.5), but in essence they are the same as in UFRP.

4.2.3 Lifting Functions

There is a family of lifting functions that allow pure functions to be lifted from the functional

level to the reactive level in a pointwise fashion:

liftC : (A → B) → SF (C A) (C B)

liftS : (A → B) → SF (S A) (S B)

liftE : (A → B) → SF (E A) (E B)

liftC2 : (A → B → Z) → SF (C A,C B) (C Z)

liftS2 : (A → B → Z) → SF (S A, S B) (S Z)

There is no liftE2 , because there is more than one useful interpretation of such a combinator.

Consider: there are two input Event signals, and one output Event signal. At any point in

time, if there are event occurrences on both input signals, then it seems that there should be

an event occurrence on the output. And if there is no occurrence on either input signal, then

it seems there shouldn’t be an occurrence on the output signal. But what about when there is

an event occurrence on one input signal and not the other?

To address this question, two separate primitives are defined: merge and join. The behaviour

of merge is to produce an event occurrence when either input has an occurrence; the behaviour

of join is to produce an event only when both inputs have an occurrence:

merge : (A → Z) → (B → Z) → (A → B → Z) → SF (E A,E B) (E Z)

join : (A → B → Z) → SF (E A,E B) (E Z)

Finally, sampleWith merges an Event signal with a Continuous or Step signal, producing

an output event occurrence exactly when there is an occurrence on the input Event signal:

sampleWithC : (A → B → Z) → SF (C A,E B) (E Z)

sampleWithS : (A → B → Z) → SF (S A,E B) (E Z)

Note that many of these lifting functions are the same other than having differing signal

kinds. In an implementation, some form of overloading mechanism might be employed on top

of these functions to exploit this.

CHAPTER 4. N-ARY FRP 40

4.2.4 Primitive Signal Functions

This section introduces the primitive signal functions of N-ary FRP. Their semantic definitions

make use of the utility functions from Appendix A.

First, a signal function that emits constant output:

constantS : A → SF as (S A)

constantS a ≈ const (a, const [])

The primitives never and now generate Event signals:

• never generates an Event signal containing no event occurrences;

• now generates an Event signal containing exactly one event occurrence at time0.

never : SF as (E A)

never ≈ const (nothing, const [])

now : SF as (E Unit)

now ≈ const (just unit, const [])

The primitives notYet and filterE eliminate selected event occurrences from an Event signal:

• notYet eliminates any initial event occurrence;

• filterE eliminates any event occurrence for which the given predicate does not hold.

notYet : SF (E A) (E A)

notYet ≈ first (const nothing)

filterE : (A → Bool) → SF (E A) (E A)

The hold and edge signal functions mediate between Step and Event signals:

• hold emits a Step signal carrying the value of its most recent input event;

• edge emits an event whenever the value of the Boolean input Step signal changes from

false to true:

hold : A → SF (E A) (S A)

hold a ≈ first (fromMaybe a)

edge : SF (S Bool) (E Unit)

edge ≈ λ (b, cp) → (nothing, edgeAux 0 b ◦ cp)

where

edgeAux : Time → Bool → ChangeList Bool → ChangeList Unit

edgeAux d [] = []

edgeAux d true ((δ, b) :: δbs) = edgeAux (d + δ) b δbs

edgeAux d false ((δ, false) :: δbs) = edgeAux (d + δ) false δbs

edgeAux d false ((δ, true) :: δbs) = (d + δ, unit) :: edgeAux 0 true δbs

Note that edgeAux only produces event occurrences in the final case, which is when false is

followed by true.

Integrating a Step or Continuous signal always produces a Continuous signal. Any Step

signal has a defined integral (see Appendix B.6), but many Continuous signals do not: if the

input signal is not integrable, then the semantics of integralC applied to that signal is undefined.

integralS : SF (S R) (C R)

integralC : SF (C R) (C R)

integralC ≈ λ s t1 →
∫
t1

0
(s t) dt

CHAPTER 4. N-ARY FRP 41

The signal function when applies a predicate to a Continuous input signal, producing an

event occurrence as output whenever the result changes from false to true. Note that, as with

edge, this is only at the moment of change: another event will not occur until the predicate has

ceased to hold and then become true again.

when : (A → Bool) → SF (C A) (E A)

The delay primitives delay a signal by a specified amount of time. Note that in the case of

Continuous and Step signals, the signal requires initialising for the delay period:

delayE : T ime+ → SF (E A) (E A)

delayS : T ime+ → A → SF (S A) (S A)

delayC : T ime+ → (Time → A) → SF (C A) (C A)

delayC d f ≈ λ s t → if t < d then f t else s (t − d)

Finally, to allow Step and Continuous signals to be combined, there are two coercion signal

functions that convert Step signals to Continuous signals:

fromS : SF (S A) (C A)

dfromS : A → SF (S A) (C A)

The difference between the two is that fromS defines the value at the moments of change of the

resultant Continuous signal to be that of the new value of the Step signal (as is also the case

for Step signals themselves), whereas dfromS defines it to be the old value of the Step signal

at those moments. One consequence of this is that dfromS requires an initial value. (This

is similar to the iPre signal function found in other FRP variants, see Section 9.1.1.) Signal

functions for which changes to their input are not reflected in their output until after that time

point are known as decoupled signal functions, and are often prefixed with a ‘d’. Decoupled

signal functions are very important in FRP, as will be discussed in Chapter 7.

4.3 Example N-ary FRP Programs

This section demonstrates N-ary FRP programming by defining some useful signal functions

and combinators. Many of these should be familiar from the CFRP and UFRP examples.

4.3.1 Additional Combinators

The routing combinators from UFRP (Section 3.4.6) can be defined as follows:

toFst : SF as cs → SF (as, bs) cs

toFst sf = sfFst ≫ sf

toSnd : SF bs cs → SF (as, bs) cs

toSnd sf = sfSnd ≫ sf

∗∗∗ : SF as cs → SF bs ds → SF (as, bs) (cs, ds)

sf 1 ∗∗∗ sf 2 = toFst sf 1 &&& toSnd sf 2

sfFirst : SF as bs → SF (as, cs) (bs, cs)

sfFirst sf = sf ∗∗∗ identity

sfSecond : SF bs cs → SF (as, bs) (as, cs)

sfSecond sf = identity ∗∗∗ sf

sfFork : SF as (as, as)

sfFork = identity &&& identity

sfSwap : SF (as, bs) (bs, as)

sfSwap = sfSnd &&& sfFst

CHAPTER 4. N-ARY FRP 42

forkFirst : SF as bs → SF as (bs, as)

forkFirst sf = sf &&& identity

forkSecond : SF as bs → SF as (as, bs)

forkSecond sf = identity &&& sf

Note that the functional level is not used in any of these definitions—the set of routing primitives

is sufficient. This is key: as discussed in Section 3.5.2, it is one of the design objectives of N-ary

FRP to be able to express all routing at the reactive level.

It can also be useful to re-associate a signal vector:

sfAssocL : SF (as, (bs, cs)) ((as, bs), cs) cau

sfAssocL = sfSecond sfFst &&& toSnd sfSnd

sfAssocR : SF ((as, bs), cs) (as, (bs, cs)) cau

sfAssocR = toFst sfFst &&& sfFirst sfSnd

Translating the UFRP switching combinators (Section 3.4.6) into N-ary FRP is straightfor-

ward:

rswitch : SF as (bs,E A) → (A → SF as (bs,E A)) → SF as bs

rswitch sf f = switch sf (λ e → rswitch (f e ≫ sfSecond notYet) f)

switchWhen : SF as bs → SF bs (E A) → (A → SF as bs) → SF as bs

switchWhen sf sfe = switch (sf ≫ forkSecond sfe)

rswitchWhen : SF as bs → SF bs (E A) → (A → SF as bs) → SF as bs

rswitchWhen sf sfe f = rswitch (sf ≫ forkSecond sfe) (λ e → f e ≫ forkSecond sfe)

replace : SF as bs → (A → SF as bs) → SF (as,E A) bs

replace sf f = rswitch (sfFirst sf) (λ e → sfFirst (f e))

4.3.2 Library Signal Functions

To demonstrate N-ary FRP programming, this section defines some library signal functions.

Constant Continuous signals are often convenient:

constantC : A → SF as (C A)

constantC a = constantS a ≫ fromS

A decoupled variant of hold that emits the value of the most recent event received before the

current time can be defined as follows:

dhold : A → SF (E A) (C A)

dhold a = hold a ≫ dfromS a

Initialised versions of integration are defined as usual:

iIntegralS : R → SF (S R) (C R)

iIntegralS x = integralS ≫ liftC (+ x)

iIntegralC : R → SF (C R) (C R)

iIntegralC x = integralC ≫ liftC (+ x)

Often when using sampleWith, the value of the event is irrelevant:

sampleC : SF (C A,E B) (E A)

sampleC = sampleWithC const

sampleS : SF (S A,E B) (E A)

sampleS = sampleWithS const

The local time can be computed by integrating the constant 1:

localTime : SF as (C Time)

localTime = constantS 1 ≫ integralS

CHAPTER 4. N-ARY FRP 43

Signal functions that emit an event after a specified amount of time, or repeatedly at a fixed

interval, are also useful:

after : T ime+ → SF as (E Unit)

after t = now ≫ delayE t

repeatedly : T ime+ → SF as (E Unit)

repeatedly t = rswitchWhen never (after t) (λ → now)

There is often a need to assign a new value to an event occurrence, for example:

tag : A → SF (E B) (E A)

tag a = liftE (const a)

nowTag : A → SF as (E A)

nowTag a = now ≫ tag a

afterTag : T ime+ → A → SF as (E A)

afterTag t a = after t ≫ tag a

All but the first occurrence in an Event signal can be suppressed as follows:

once : SF (E A) (E A)

once = switch sfFork nowTag

The fallingBall signal function from the Bouncing-Ball example is defined:

fallingBall : Ball → SF as (C Ball)

fallingBall (h, v) = constantS (−g) ≫ iIntegralS v ≫ forkFirst (iIntegralC h) ≫ liftC2 (,)

Note that, unlike in UFRP (see Section 3.4.6), the two output signals have to be explicitly

tupled. In UFRP a tuple of signals is identical to a signal of tuples, and thus this explicit

tupling is unnecessary.

Except for adapting the type signatures to multi-kinded signals, the other signal functions

from the Bouncing-Ball example are the same as in UFRP:

detectBounce : SF (C Ball) (E Ball)

detectBounce = when detectImpact

elasticBall : Ball → SF as (C Ball)

elasticBall b = rswitchWhen (fallingBall b) detectBounce (fallingBall ◦ negateVel)

inelasticBall : Ball → SF as (C Ball)

inelasticBall b = switchWhen (fallingBall b) detectBounce (λ → constantC (0, 0))

resetBall : (Ball → SF as (C Ball)) → Ball → SF (as,E Ball) (C Ball)

resetBall f b = replace (f b) f

4.4 Totality and Recursion

With the exception of integralC and when, the semantics of the N-ary FRP primitives is total.

The semantics of those two signal functions is partial: their arguments are expected to satisfy

additional constraints. However, as will be exemplified in Chapter 5, an approximation of

these signal functions in a discretely sampled implementation will usually be total without any

constraint on the input signal. (Of course, if the host language of an implementation is partial,

then partial N-ary FRP programs can always be constructed by lifting partial functions.)

The library N-ary FRP code (Section 4.3) is defined in terms of the N-ary FRP primitives.

The definitions are thus all total except for those that use when or integralC , in which case

they are only total if they satisfy the constraints of those primitives. For example, fallingBall

CHAPTER 4. N-ARY FRP 44

satisfies the constraint of the input signal to integralC being integrable, because that input

(the velocity) is a linear function. On the other hand, iIntegralC preserves the constraint and

is only total if the input signal is integrable. However, in any implementation giving total

approximations to when and integralC , all of the library code would be total.

There is one significant exception to the preceding claim, and that is the rswitch combinator.

Notice that its definition is recursive, and that the recursion is non-terminating (it defines an

infinite term). This (potentially ill-defined) use of recursion makes the combinator partial. In

particular, Zeno behaviour [18, 29] (infinite structural switches in finite time) can be defined.

While the use of the notYet primitive prevents more than one structural switch at any individual

time point, it does not prevent infinite switches over a finite interval. This is because the time

domain is dense: there are infinitely many time points between any two time points. For

example, Thomson’s Lamp [87, 123] can be encoded as follows:

lamp : T ime+ → Bool → SF as (S Bool)

lamp t b = rswitch (lampAux (t , b)) lampAux

where

lampAux : (T ime+ × Bool) → SF as (S Bool ,E (T ime+ × Bool))

lampAux (t ′, b′) = constantS b′ &&& afterTag t ′ (t ′/2 , not b′)

This signal function generates a Step signal that changes ever more rapidly, tending towards

infinitely many changes as time tends towards 2t. This violates the conceptual model of Step

signals which requires there to be only a finite number of changes in finite time. Even if a

Continuous signal were used instead, there is still a more fundamental problem: the output is

undefined from time 2t onwards [127].

This problem could be addressed by restricting the rswitch combinator in a number of

ways, such as requiring a fixed minimum time delta between structural switches. However, the

approach taken here is to keep the partial definition, adding the constraint that only uses of

rswitch that produce a finite number of structural switches in finite time are valid. Note, for

example, that the replace combinator does satisfy this constraint, and thus is total.

One may argue that, having made this decision, the use of notYet is unnecessarily restrictive

as it does not guarantee totality but does obstruct well-defined uses of rswitch that have a finite

number (greater than one) of structural switches at some time points. However, there are two

pragmatic reasons for including notYet in the definition of rswitch. First, it is very easy for an

FRP programmer to define a combinator such as replace and forget to use notYet if it has to be

done explicitly, inadvertently creating a divergent program. Second, many discretely sampled

implementations of FRP will diverge if there are infinitely many structural switches at a time

point, but will not do so for a signal function such as lamp as the sampling rate will set a

minimum rate of switching.

4.5 Conclusions

N-ary FRP is a new FRP variant, inspired heavily by the advantages (and limitations) of

UFRP and its Yampa implementation. Like UFRP, it is based around a first-class signal-

function abstraction, and does not provide signals (or signal generators) as first-class entities.

The main difference between N-ary FRP and UFRP is that N-ary FRP provides three distinct

signal kinds, and n-ary signal functions which operate over vectors of such multi-kinded signals.

CHAPTER 4. N-ARY FRP 45

The distinction between the signal kinds is enforced by the N-ary FRP type system, thereby

ensuring that kind-specific operations cannot be applied to signals of the wrong kind. UFRP

does not give this assurance, which can lead to subtle errors in UFRP programs (see Section 5.4

for an example of this). There are existing FRP variants that make a clear distinction between

the three signal kinds [37, 63], but, to my knowledge, N-ary FRP is the first FRP variant to do

so in a setting with a first-class signal-function abstraction.

A noteworthy advantage of N-ary FRP over most other FRP variants is that N-ary FRP

allows all network routing to be expressed at the reactive level. This was an explicit objective,

as it allows great flexibility when it comes to implementation and optimisation.

Chapter 5

Embedded Implementations of

N-ary FRP

In Section 3.5.1 it was claimed that one of the advantages of an FRP language with signal

functions as the primary reactive abstraction is the simplicity and purity with which it can be

implemented. However, thus far only conceptual models of FRP have been considered, not any

concrete implementations.

This chapter addresses this by embedding an implementation of N-ary FRP in both Agda

and Haskell. These primary reason that these two languages are chosen is that they have suf-

ficiently rich type systems to allow N-ary FRP to be defined as an embedded language. The

purpose of the Agda embedding is to provide totality and termination guarantees about the

implementation, and thus also about N-ary FRP programs. The purpose of the Haskell embed-

ding is to demonstrate that the language and its type system can be embedded in a mainstream

functional language that has provided adequate performance for many FRP applications (al-

though this particular implementation is intended only as a proof-of-concept, see Section 8.2

for some discussion as to its efficiency).

The implementation approach is the same in both languages, with the aim of keeping the

two embeddings as similar as possible. Neither implementation is optimised, with the emphasis

being on clarity rather than efficiency. The complete code for both embeddings is available in

the online archive [1].

5.1 Pull-Based Sampling

The implementations in this chapter can be characterised as pull-based and discretely sampled.

This means that the data-flow network (representing the N-ary FRP program) is executed over

a discrete sequence of time steps. At each step, a sample of the input signal vector is read in,

and then a sample of the output signal vector is emitted. The amount of time that has passed

since the previous step is called the time delta, and this is implicitly available as an additional

input to all signal functions.

Of course, this style of implementation will only approximate the idealised semantics of

46

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 47

N-ary FRP (given in Chapter 4). However, as with other FRP implementations that take this

approach, the idea is that the sampling rate will be sufficiently frequent to reduce the error to

within some acceptable margin. Discussion of other implementation approaches is postponed

until Chapter 8.

Central to the pull-based approach is the notion of a sample of a signal vector. A sample is

the representation of a signal’s value at a specific point in time, such that the (approximation

of the) signal comprises its samples at all points in time. The implementations in this chapter

use the following representation of samples:

Sample : SVDesc → Set

Sample (C A) = A

Sample (E A) = Maybe A

Sample (S A) = A

Sample (as, bs) = Sample as × Sample bs

That is, a sample of a Continuous or Step signal is its value, the sample of an Event signal is

an optional value, and the sample of a product of signals is a product of samples. The idea

behind the sample of an Event signal is that if an event is occurring then the sample is just the

value of that event, and if not then the sample is nothing.

This implementation is unoptimised, and thus the same representation is used for samples

of Step and Continuous signals. An optimised implementation would likely use a different

representation of Step signals to exploit their discrete nature. For example, Step-signal samples

could be optional values representing signal changes.

In terms of the conceptual model from Section 4.1, the sample of a signal vector at any

given time is defined by the following semantic function (not to be confused with the sampleC

and sampleS signal functions):

sample : {as : SVDesc} → SigVec as → SampleTime → Sample as

sample {C } s t = s t

sample {S } s t = val s t

sample {E } s t = occ s t

sample { , } (s1, s2) t = (sample s1 t , sample s2 t)

The val and occ utility functions are defined in Appendix B.1.

5.2 Agda Embedding

As discussed, N-ary FRP programs define synchronous data-flow networks. The basic idea of

the Agda embedding is to construct a data type to represent such networks, and then define a

function over that data type that executes the network for one time step. Running an N-ary

FRP program is then achieved by applying this function iteratively.

The embedding is implemented using Agda 2.2.6 with the --type-in-type option. This is not

a necessary option, but it does simplify the code significantly. Use of this option makes the

logic of Agda inconsistent, but that inconsistency is not exploited. An earlier version of this

implementation [111] has been encoded without this option to confirm that this is the case.

5.2.1 Network Nodes

The lifting functions (Section 4.2.3) and primitive signal functions (Section 4.2.4) form the

nodes of the data-flow network. At each time step the network is provided with an input

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 48

sample and time delta, and is expected to produce an output sample. Many signal functions

are such that their output at any given time point depends upon input from previous time

points, which in this case means previous input samples. One way to deal with this would be

to have a monolithic global state that stores all past samples, but this would be very inefficient

and cause a space leak. Instead, each network node has its own internal state, in which it

can store any required information about the past. This state is isolated from the rest of the

network: it is only accessible by that node.

A node can therefore be defined as a pair of a state and a transition function that maps a

time delta, state, and input sample to an updated state and output sample:

data Node (as bs : SVDesc) : Set where

node : ∀ {Q } → (∆t → Q → Sample as → Q × Sample bs) → Q → Node as bs

The identifier Q is used for the (polymorphic) type of the state.

It is then trivial to define a function that executes a node for one time step:

stepNode : ∀ {as bs } → ∆t → Node as bs → Sample as → Node as bs × Sample bs

stepNode δ (node f q) sa = first (node f) (f δ q sa)

5.2.2 Routing

In this style of implementation, there are two possible approaches to network routing: shal-

low embedding and deep embedding. Shallow embedding involves encoding the routing at the

functional level (i.e. in the host language), whereas deep embedding involves maintaining a

representation of the routing at the reactive level.

Shallow Embedding

In this case, a shallow embedding would involve encoding the routing primitives in terms of the

existing Node data type. For example, identity could be encoded as follows:

shallowId : ∀ {as } → Node as as

shallowId = node (λ sa → (unit, sa)) unit

As a less trivial example, the &&& routing combinator could be encoded by merging the two

component nodes:

shallowFan : ∀ {as bs cs } → Node as bs → Node as cs → Node as (bs, cs)

shallowFan {as } {bs } {cs } (node {Q1} f1 q1) (node {Q2} f2 q2) = node fanAux (q1, q2)

where

fanAux : ∆t → Q1 × Q2 → Sample as → (Q1 × Q2) × Sample (bs, cs)

fanAux δ (q1, q2) sa with f1 δ q1 sa | f2 δ q2 sa

... | (q ′
1
, sb) | (q ′

2
, sc) = ((q ′

1
, q ′

2
), (sb, sc))

The disadvantage of this approach is that once the routing is encoded within the (host lan-

guage) transition function, the structure of that routing is hidden. As discussed in Section 3.5.2,

retaining complete knowledge of the routing at the reactive level is useful for optimisation. Con-

sequently, a deep embedding of the routing primitives is performed instead, as described in the

next section. While there is no optimisation in this particular implementation, this approach

facilities adding optimisations later.

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 49

Listing 5.1 A deep embedding of the primitive combinators

data SF : SVDesc → SVDesc → Set where

prim : ∀ {as bs } → Node as bs → SF as bs

arouter : ∀ {as bs } → AtomicRouter as bs → SF as bs

seq : ∀ {as bs cs } → SF as bs → SF bs cs → SF as cs

fan : ∀ {as bs cs } → SF as bs → SF as cs → SF as (bs, cs)

switcher : ∀ {as bs A} → SF as (bs,E A) → (A → SF as bs) → SF as bs

freezer : ∀ {as bs } → SF as bs → SF as (bs,C (SF as bs))

step : ∀ {as bs } → ∆t → SF as bs → Sample as → SF as bs × Sample bs

step δ (prim n) sa = first prim (stepNode δ n sa)

step δ (arouter r) sa = (arouter r , stepARouter r sa)

step δ (seq sf 1 sf 2) sa with step δ sf 1 sa

... | (sf ′1, sb) with step δ sf 2 sb

... | (sf ′2, sc) = (seq sf ′1 sf ′2, sc)

step δ (fan sf 1 sf 2) sa with step δ sf 1 sa | step δ sf 2 sa

... | (sf ′1, sb) | (sf
′

2, sc) = (fan sf ′1 sf ′2, (sb, sc))

step δ (switcher sf f) sa with step δ sf sa

... | (sf ′, (sb, nothing)) = (switcher sf ′ f , sb)

... | (, (, just e)) = step 0 (f e) sa

step δ (freezer sf) sa with step δ sf sa

... | (sf ′, sb) = (freezer sf ′, (sb, sf))

Deep Embedding

A deep embedding involves constructing an inductive data type to represent the possible net-

work structures, with a constructor for nodes, each routing primitive, and each primitive dy-

namic combinator. A step function is then defined over this data type to perform one step of

network execution (whereas in a shallow embedding the execution of the routing primitives is

contained within their definition).

First, to avoid duplication of code later, an auxiliary data type is defined for the three

atomic routers: identity , sfFst and sfSnd . Note that to avoid name clashes, the names of the

constructors are slightly different to those of the corresponding routing primitives.

data AtomicRouter : SVDesc → SVDesc → Set where

sfId : ∀ {as } → AtomicRouter as as

fstProj : ∀ {as bs } → AtomicRouter (as, bs) as

sndProj : ∀ {as bs } → AtomicRouter (as, bs) bs

A step function for AtomicRouter is trivial:

stepARouter : ∀ {as bs } → AtomicRouter as bs → Sample as → Sample bs

stepARouter sfId sa = sa

stepARouter fstProj (sa1,) = sa1

stepARouter sndProj (, sa2) = sa2

A time delta is not required, and there is no need to return an updated AtomicRouter as it

contains no state.

Listing 5.1 contains a first attempt at constructing a top-level data type (SF), along with

a corresponding step function. The most interesting case in the step function is for switcher.

Notice that if no event occurs, then the output is taken from the subordinate signal function

and the switcher is retained. However, if an event does occur, then a residual signal function

is generated (f e), and the step function is applied to it immediately with a time delta of 0.

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 50

The subordinate signal function, and its output sample, are discarded; only the residual signal

function is retained, in place of the entire switching combinator.

There is a problem here: time deltas must be strictly positive, so this is not type correct.

Yet the residual signal function needs to be executed immediately, as the output of switch is

defined (semantically) to be that of the residual signal function at the moment of switching.

The alternative is to provide the recursive call to step with a time delta other than 0, but that

would amount to starting the residual signal function at a different point in time (which would

be incorrect). The issue could be avoided by expanding the ∆t type to include 0, but a more

principled approach is introduced in the next section.

Aside: Coinduction and Infinite Switching

Another issue with the preceding formulation is that it does not allow for infinite recursive

switching. For example, a definition of rswitch in terms of switcher (as in Section 4.3.1) is

rejected by Agda as it forms an infinite term.

Infinite terms can be represented in Agda by using coinductive data types [33], so the solu-

tion would seem to be to make the type of the switching function coinductive1. The definition

of rswitch in terms of switcher would then be accepted by Agda’s termination checker. How-

ever, Agda would then (correctly) reject the step function as potentially non-terminating. The

problem is that, at the moment of switching, the residual signal function starts immediately.

Within that residual signal function another structural switch could occur immediately, caus-

ing another residual signal function to be generated and immediately start; and so forth. If

the switching function is inductive, then there can only be a finite number of such structural

switches, as only finite signal-function terms can be expressed. However, if the switching func-

tion is coinductive, then the chain of switching could be infinite. For example, a variant of the

rswitch combinator that did not include a notYet in its definition would diverge at the moment

of its first structural switch.

The crux of the matter is that the combination of coinductive switching functions and switch-

ing combinators that immediately start the residual signal function can lead to non-termination.

Consequently, restricting the switching function to be inductive rather than coinductive is ben-

eficial, as it allows an arbitrary yet finite number of structural switches to occur at one time

step, while prohibiting an infinite number and thus guaranteeing termination. The rswitch

combinator is merely a special case of an infinite switching combinator that, while allowing an

infinite number of structural switches, restricts there to be at-most one at each time step.

One way to allow rswitch would be to introduce a coinductive switching function (as dis-

cussed above), and delay the start of all residual signal functions by one time step. However,

a simpler solution (and one that avoids introducing delays) is to make rswitch the primitive

switching combinator instead of switch. Once rswitch is a primitive, the restriction that there

must be at-most one structural switch per time step can easily be incorporated into the step

function. This is accepted by Agda’s termination checker, and it is then easy to define switch

in terms of rswitch:

1A reader familiar with Agda can note that the type of the switch combinator would then be:
SF as (bs,E e) → (e → ∞ (SF as bs)) → SF as bs

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 51

Listing 5.2 Uninitialised and initialised signal functions

data SF : SVDesc → SVDesc → Set where

prim : ∀ {as bs } → (Sample as → Node as bs × Sample bs) → SF as bs

arouter : ∀ {as bs } → AtomicRouter as bs → SF as bs

seq : ∀ {as bs cs } → SF as bs → SF bs cs → SF as cs

fan : ∀ {as bs cs } → SF as bs → SF as cs → SF as (bs, cs)

rswitcher : ∀ {as bs A} → SF as (bs,E A) → (A → SF as (bs,E A)) → SF as bs

freezer : ∀ {as bs } → SF as bs → SF as (bs,C (SF as bs))

data SF ′ : SVDesc → SVDesc → Set where

prim : ∀ {as bs } → Node as bs → SF ′ as bs

arouter : ∀ {as bs } → AtomicRouter as bs → SF ′ as bs

seq : ∀ {as bs cs } → SF ′ as bs → SF ′ bs cs → SF ′ as cs

fan : ∀ {as bs cs } → SF ′ as bs → SF ′ as cs → SF ′ as (bs, cs)

rswitcher : ∀ {as bs A} → SF ′ as (bs,E A) → (A → SF as (bs,E A)) → SF ′ as bs

freezer : ∀ {as bs } → SF ′ as bs → SF ′ as (bs,C (SF as bs))

switch : ∀ {as bs A} → SF as (bs,E A) → (A → SF as bs) → SF as bs

switch sf f = rswitch sf (λ e → f e &&& never)

Thus, for the refinement of the implementation in the next section, an rswitcher constructor is

used instead of switcher.

5.2.3 A Distinct Initialisation Step

The first step of execution of a signal function is a special case, as there are no previous input

samples at that point. Also, as discussed in the previous section, the first step of execution can

be at (local) time0, in which case there is no time delta either.

This is addressed by making the design decision that the first step of execution will always

be at time0, and that this step will be distinct from all other steps. This step is called the

initialisation step. The SF type and step function in Listing 5.1 are insufficient to express this

(as they treat all steps the same), and so they need to be refined.

First, the SF data type in Listing 5.1 is replaced with the two data types in Listing 5.2. The

SF data type now represents uninitialised signal functions (those that have not yet undergone

an initialisation step), and the new SF ′ data type represents initialised signal functions (those

that have undergone an initialisation step and are now considered to be “running”). The key

difference between SF and SF ′ is the prim constructor. In SF it contains a function that,

given an input sample, produces a Node and an output sample. Thus it can produce the initial

output with no dependence on a time delta or an internal state (recall that the internal state

represents past inputs). Also, note that in SF ′, the new subordinate signal function generated

by the switching function is an uninitialised signal function. Making this explicit in the type is

an additional advantage of this representation.

The step function in Listing 5.1 is likewise replaced by the two functions in Listing 5.3. The

initialisation step is represented by step0, which converts an SF to an SF ′ and does not take a

time delta as an argument. All other steps are represented by step′, which is almost identical

to the original step function, except in two places. The first is the recursive call made after a

structural switch occurs, which is made to step0 rather than step′ thereby avoiding the need for

a time delta. The second is in the case of freezer, which uses the auxiliary function freezeSF to

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 52

Listing 5.3 Step functions with an initialisation step

step0 : ∀ {as bs } → SF as bs → Sample as → SF ′ as bs × Sample bs

step0 (prim f) sa = first prim (f sa)

step0 (arouter r) sa = (arouter r , stepARouter r sa)

step0 (seq sf 1 sf 2) sa with step0 sf 1 sa

... | (sf ′1, sb) with step0 sf 2 sb

... | (sf ′2, sc) = (seq sf ′1 sf ′2, sc)

step0 (fan sf 1 sf 2) sa with step0 sf 1 sa | step0 sf 2 sa

... | (sf ′1, sb) | (sf
′

2, sc) = (fan sf ′1 sf ′2, (sb, sc))

step0 (rswitcher sf f) sa with step0 sf sa

... | (sf ′, (sb, nothing)) = (rswitcher sf ′ f , sb)

... | (, (, just e)) with step0 (f e) sa

... | (sf ′, (sb,)) = (rswitcher sf ′ f , sb)

step0 (freezer sf) sa with step0 sf sa

... | (sf ′, sb) = (freezer sf ′, (sb, sf))

step′ : ∀ {as bs } → ∆t → SF ′ as bs → Sample as → SF ′ as bs × Sample bs

step′ δ (prim n) sa = first prim (stepNode δ n sa)

step′ δ (arouter r) sa = (arouter r , stepARouter r sa)

step′ δ (seq sf 1 sf 2) sa with step′ δ sf 1 sa

... | (sf ′1, sb) with step′ δ sf 2 sb

... | (sf ′2, sc) = (seq sf ′1 sf ′2, sc)

step′ δ (fan sf 1 sf 2) sa with step′ δ sf 1 sa | step′ δ sf 2 sa

... | (sf ′1, sb) | (sf
′

2, sc) = (fan sf ′1 sf ′2, (sb, sc))

step′ δ (rswitcher sf f) sa with step′ δ sf sa

... | (sf ′, (sb, nothing)) = (rswitcher sf ′ f , sb)

... | (, (, just e)) with step0 (f e) sa

... | (sf ′, (sb,)) = (rswitcher sf ′ f , sb)

step′ δ (freezer sf) sa with step′ δ sf sa

... | (sf ′, sb) = (freezer sf ′, (sb, freezeSF δ sf))

where

freezeSF : ∀ {as bs } → ∆t → SF ′ as bs → SF as bs

freezeSF δ (prim n) = prim (stepNode δ n)

freezeSF δ (arouter r) = arouter r

freezeSF δ (seq sf 1 sf 2) = seq (freezeSF δ sf 1) (freezeSF δ sf 2)

freezeSF δ (fan sf 1 sf 2) = fan (freezeSF δ sf 1) (freezeSF δ sf 2)

freezeSF δ (rswitcher sf f) = rswitcher (freezeSF δ sf) f

freezeSF δ (freezer sf) = freezer (freezeSF δ sf)

convert the SF ′ back into an SF , by providing it with the time delta. This is another advantage

of the two distinct SF types: freezeSF is forced to correctly take into account the time delta

(in Listing 5.1 the frozen signal function incorrectly ignored the time delta).

5.2.4 Primitives

The necessary infrastructure to represent and execute a network of signal functions has now

been established. This section completes the Agda embedding of N-ary FRP by defining the

N-ary FRP primitives in terms of that infrastructure.

Routing Primitives and Dynamic Combinators

As the implementation uses a deep embedding of the routing primitives and dynamic combina-

tors, their definitions are trivial:

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 53

identity : ∀ {as } → SF as as

identity = arouter sfId

sfFst : ∀ {as bs } → SF (as, bs) as

sfFst = arouter fstProj

sfSnd : ∀ {as bs } → SF (as, bs) bs

sfSnd = arouter sndProj

≫ : ∀ {as bs cs } → SF as bs → SF bs cs → SF as cs

≫ = seq

&&& : ∀ {as bs cs } → SF as bs → SF as cs → SF as (bs, cs)

&&& = fan

rswitch : ∀ {as bs A} → SF as (bs,E A) → (A → SF as (bs,E A)) → SF as bs

rswitch = rswitcher

freeze : ∀ {as bs } → SF as bs → SF as (bs,C (SF as bs))

freeze = freezer

Utilities for Defining Primitives

Before defining the rest of the primitives, some utility functions are first introduced. These are

not part of N-ary FRP (and thus will be hidden from the N-ary FRP programmer); they are

merely for internal use in defining the primitives.

First, to increase the readability of the code, some synonyms are defined for the Maybe

constructors that will be used when dealing with event samples:

noEvent : ∀ {A} → Sample (E A)

noEvent = nothing

event : ∀ {A} → A → Sample (E A)

event = just

The lifting functions (Section 4.2.3) and primitive signal functions (Section 4.2.4) are defined

using the prim constructor. However, many of them have similarities that lead to recurring

patterns in their definitions. To exploit this, some construction functions are introduced that

abstract out these common patterns. Note that these common patterns will appear again in

Section 8.3.3, where they will form the basis for optimisations.

First, a general construction function is defined as follows:

mkSF : ∀ {as bs Q } → (∆t → Q → Sample as → Q × Sample bs) →

(Sample as → Q × Sample bs) → SF as bs

mkSF f g = prim (first (node f) ◦ g)

As discussed, signal generators can be represented in N-ary FRP as signal functions that

ignore their input. Such signal functions are called sources. Constructing a source requires an

initial output sample, an initial state, and a state update function that produces an output

sample after each subsequent time step:

mkSFsource : ∀ {as bs Q } → (∆t → Q → Q × Sample bs) → Q → Sample bs → SF as bs

mkSFsource f q sb = mkSF (λ δ q ′ → f δ q ′) (const (q, sb))

Some signal functions do not depend upon time, but merely the order in which samples are

received. These are called timeless signal functions, and they can be defined by an initial state

and a transition function that does not take a time delta as an argument:

mkSFtimeless : ∀ {as bs Q } → (Q → Sample as → Q × Sample bs) → Q → SF as bs

mkSFtimeless f q = mkSF (const f) (f q)

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 54

Some signal functions do not have an internal state, and do not depend on time. These are

called stateless signal functions, and are a subset of the timeless signal functions. They can

be constructed from a function mapping an input sample to an output sample. Note that the

present implementation requires a state even when not used, so a unit state is used:

mkSFstateless : ∀ {as bs } → (Sample as → Sample bs) → SF as bs

mkSFstateless f = mkSFtimeless (λ sa → (unit, f sa)) unit

Finally, a subset of the stateless signal functions are the changeless (constant) signal func-

tions, those that produce the same output sample at every time step:

mkSFchangeless : ∀ {as bs } → Sample bs → SF as bs

mkSFchangeless sb = mkSFstateless (const sb)

Primitive Signal Functions

Defining the primitive signal functions is now (mostly) straightforward. First constantS and

never are easily defined in terms of mkSFchangeless :

constantS : ∀ {as A} → A → SF as (S A)

constantS a = mkSFchangeless a

never : ∀ {as A} → SF as (E A)

never = mkSFchangeless noEvent

The now signal function is slightly more complicated as it produces an initial event. How-

ever, thereafter it will always produce noEvent , so a unit state and a constant transition function

are used:

now : ∀ {as } → SF as (E Unit)

now = mkSFsource (λ → (unit,noEvent)) unit (event unit)

The notYet signal function produces noEvent initially, and is an identity function thereafter:

notYet : ∀ {A} → SF (E A) (E A)

notYet = mkSF (λ → curry id) (const (unit,noEvent))

The filterE signal function is a stateless signal function that filters the event samples:

filterE : ∀ {A} → (A → Bool) → SF (E A) (E A)

filterE p = mkSFstateless (maybeFilter p)

The hold signal function stores the most recent input event occurrence in its internal state.

The state is emitted as the output (after updating it, if necessary) at every time step:

hold : ∀ {A} → A → SF (E A) (S A)

hold = mkSFtimeless (λ q → fork ◦ fromMaybe q)

The signal functions edge and when are very similar. Their internal state is a Boolean that

records whether the previous input (or predicate applied to the previous input) was true. That

state is compared with the current input to see if an event should be emitted:

edge : SF (S Bool) (E Unit)

edge = mkSFtimeless (λ q i → (i , (if i && not q then event unit else noEvent))) true

when : ∀ {A} → (A → Bool) → SF (C A) (E A)

when p = mkSFtimeless (λ q i → (p i , (if p i && not q then event i else noEvent))) true

Integration is defined using the rectangle rule on Step signals, and using the trapezium rule

on Continuous signals. The internal state required for this is a pair of the current total and the

most recent input sample.

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 55

Listing 5.4 Embedding the lifting functions

liftC : ∀ {A B } → (A → B) → SF (C A) (C B)

liftC = mkSFstateless

liftS : ∀ {A B } → (A → B) → SF (S A) (S B)

liftS = mkSFstateless

liftE : ∀ {A B } → (A → B) → SF (E A) (E B)

liftE = mkSFstateless ◦ maybeMap

liftC2 : ∀ {A B Z } → (A → B → Z) → SF (C A,C B) (C Z)

liftC2 = mkSFstateless ◦ uncurry

liftS2 : ∀ {A B Z } → (A → B → Z) → SF (S A, S B) (S Z)

liftS2 = mkSFstateless ◦ uncurry

merge : ∀ {A B Z } → (A → Z) → (B → Z) → (A → B → Z) → SF (E A,E B) (E Z)

merge fa fb fab = mkSFstateless (uncurry (maybeMerge fa fb fab))

join : ∀ {A B Z } → (A → B → Z) → SF (E A,E B) (E Z)

join = mkSFstateless ◦ uncurry ◦ maybeMap2

sampleWithC : ∀ {A B Z } → (A → B → Z) → SF (C A,E B) (E Z)

sampleWithC f = mkSFstateless (uncurry (maybeMap ◦ f))

sampleWithS : ∀ {A B Z } → (A → B → Z) → SF (S A,E B) (E Z)

sampleWithS f = mkSFstateless (uncurry (maybeMap ◦ f))

IntegralState = R × R

integrateRectangle : ∆t → IntegralState → R → IntegralState × R

integrateRectangle δ (tot , x1) x2 = let tot ′ = tot + (δ ∗ x1)

in ((tot ′, x2), tot ′)

integrateTrapezium : ∆t → IntegralState → R → IntegralState × R

integrateTrapezium δ (tot , x1) x2 = let tot ′ = tot + (δ ∗ (x1 + x2) / 2)

in ((tot ′, x2), tot ′)

integralS : SF (S R) (C R)

integralS = mkSF integrateRectangle (λ x0 → ((0, x0), 0))

integralC : SF (C R) (C R)

integralC = mkSF integrateTrapezium (λ x0 → ((0, x0), 0))

As Step and Continuous signals have the same representation in this implementation, the

fromS signal function is just an identity function:

fromS : ∀ {A} → SF (S A) (C A)

fromS = mkSFstateless id

Whereas dfromS is implemented as a one-time-step delay:

dfromS : ∀ {A} → A → SF (S A) (C A)

dfromS = mkSFtimeless (flip ,)

Finally, the delay signal functions are omitted as they are substantially more involved than

the other primitives. Their definitions can be found in Appendix C.1. However, an informal

overview of their implementation is given in Section 5.4, as it provides a good example of the

benefits of multi-kinded signals.

Lifting Functions

The many lifting functions of N-ary FRP can be defined as stateless signal functions that are

just pointwise mappings over the input samples. In the case of products of signals this involves

uncurrying the lifted function, and in the case of events there is additional mapping over Maybe

types. The definitions are very similar, and can be found in Listing 5.4.

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 56

5.3 Haskell Embedding

Much of the code for the Haskell embedding described in this section corresponds closely to

the Agda code in the preceding section. Consequently, only the noteworthy differences are

discussed and the majority of the code is relegated to Appendix C.2.

5.3.1 Language Extensions

The version of Haskell used for this implementation is Haskell 2010 [86], with several language

extensions provided by the Glasgow Haskell Compiler (GHC) [121].

The extensions used, along with their corresponding flags, are:

• Empty Data Declarations (EmptyDataDecls)

• Generalised Algebraic Data Types (GADTs) [64]

• Kind Signatures (KindSignatures)

• Scoped Type Variables (ScopedTypeVariables)

• Type Families (TypeFamilies) [66, 109]

These extensions provide most of the features of the Agda type system that were required for

the Agda embedding. The key ideas are to use GADTs instead of Agda data types, empty data

types instead of type-level values, and type families instead of type-level functions [66, 116].

This is slightly more awkward, and less type safe, than the Agda embedding, but it allows the

N-ary FRP type system to be encoded.

5.3.2 Signals and Samples

The first task is encoding signal vector descriptors. Unlike Agda, data cannot be used at the

type level in Haskell. However, type-level values can be simulated by empty data types:

data C a :: ∗

data E a :: ∗

data S a :: ∗

Unfortunately, GHC does not yet support algebraic data kinds [114], and so all such type-level

values have to be assigned the kind ∗. This is less type safe than Agda, but does have the

convenient side effect that the Haskell product type can be used for products of signals, rather

than having to define a separate type constructor. For example, the type-level function Sample

can be defined (using type families) as follows:

type family Sample as :: ∗

type instance Sample (C a) = a

type instance Sample (E a) = Maybe a

type instance Sample (S a) = a

type instance Sample (as, bs) = (Sample as,Sample bs)

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 57

5.3.3 Time and Recursion

To make the implementation executable a computable representation of time is needed. In this

case, double-precision floating-point numbers are used:

type Time = Double

type Dt = Time

The remainder of the Haskell embedding is sufficiently similar to the Agda code that it is rele-

gated to Appendix C.2. However, there is one noteworthy distinction. Recall from Section 5.2.2

that the Agda embedding made rswitch a primitive rather than switch, because the definition

of rswitch in terms of switch is not accepted by Agda’s termination checker. This is not neces-

sary in Haskell, as non-termination and infinite terms are permitted. Therefore, in the Haskell

embedding, switch is taken as a primitive (which is preferable as switch is simpler and easier

to optimise).

5.3.4 Interaction with the Outside World

The step functions are not a full execution mechanism, but constitute the core of one. Running

an N-ary FRP program involves applying the step functions iteratively, reading some input and

emitting some output at each iteration.

Designing interfaces for FRP variants is somewhat orthogonal to the topics of this thesis.

However, to give one example, consider the following function that executes a network at as

rapid a sampling rate as the system resources available to it will allow:

runSF :: forall as bs.SF as bs → IO (Sample as)→ (Sample bs → IO ())→ IO Time → IO Bool → IO ()

runSF sf ins outs time done = do sa ← ins

let (sf ′, sb) = step0 sf sa

outs sb

runSF ′ 0 sf ′

where

runSF ′ :: Time → SF ′ as bs → IO ()

runSF ′ t0 sf ′ = do sa ← ins

t1 ← time

let (sf ′′, sb) = step′ (t1 − t0) sf ′ sa

outs sb

d ← done

unless d (runSF ′ t1 sf ′′)

The basic idea is that the signal function is executed iteratively, until some termination

condition is met. At each iteration, an input sample is read in, and an output sample is

emitted. The arguments to the runSF function are: the signal function to execute (sf), an

IO action to read an input sample (ins), an IO action to emit an output sample (outs), an

IO action to read the current time (time), and an IO action to determine if execution should

terminate (done).

Finally, note that an N-ary FRP library would be expected to provide additional infrastruc-

ture on top of such a function.

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 58

5.4 Delaying Signals

Recall the family of delay signal functions:

delayC : T ime+ → (Time → A) → SF (C A) (C A)

delayS : T ime+ → A → SF (S A) (S A)

delayE : T ime+ → SF (E A) (E A)

Intuitively, these signal functions delay a signal by a specified amount of time. The Agda

embedding of these signal functions can be found in Appendix C.1. This section provides a

rough overview of those implementations, and discusses the benefits multi-kinded signals bring

to ensuring that those implementations respect the abstractions of the different signal kinds.

The basic idea is to store the current time and a queue of samples in the internal state of

the signal function. At every time step, the input sample is added to the queue along with

a time stamp recording when it should be dequeued (the current time plus the delay period).

While the current time is less than the delay period, the output is determined depending upon

the signal kind:

• a Continuous signal applies the initialisation function to the current time;

• a Step signal uses the initialisation value; and

• an Event signal has no event occurrence.

However, determining the output sample after the delay period is a little more complicated.

First consider the simple case where the time delta is constant. Once the current time reaches

the delay period, the first sample is dequeued and used as the output sample. Thereafter, at

each time step the next sample is dequeued and emitted.

However, if the time delta varies then at any given time there may be zero, one, or more

samples ready to be dequeued. In each case a single output sample has to be emitted. For Step

and Continuous signals, if no sample is yet available for dequeueing this can be dealt with by

repeating the previous output sample, and continuing to do so until a sample is ready to be

dequeued. This is called oversampling2. On the other hand, if more than one sample is ready

to be dequeued, then the most recent sample can be used and the rest discarded. This is called

undersampling.

Event signals are more problematic. One could imagine using the same technique of over-

sampling and undersampling, but this would not do what the N-ary FRP programmer expects.

Conceptually, events are isolated instantaneous occurrences; delaying an Event signal should

not change the number of events, merely the time points at which they occur. In particular, the

sampling rate (which is hidden from the N-ary FRP programmer) should not cause events to

be gained and lost in this fashion3. Thus duplicating or eliminating samples containing event

occurrences is unacceptable, though samples without an event occurrence could be duplicated

or eliminated freely.

2The terminology comes from the synchronous data-flow languages, and should not be confused with over-
sampling in the field of signal processing.

3Of course, the sampling rate will always introduce imprecision relative to the ideal semantics. However, this
is not just a margin of inaccuracy. Here, a small change to the sampling rate or delay period could easily cause
all event occurrences to be lost from an Event signal.

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 59

This is dealt with by only storing event occurrences in the queue. The output sample is then

determined by the number of event occurrences that are ready to be dequeued. If there are no

events ready to be dequeued, the absence of an event is emitted. If there is exactly one event

ready to be dequeued, then that event is emitted. However, if there are several events ready to

be dequeued, then things are trickier. For this situation to arise, events need to be occurring

faster than the sampling rate, which is usually a sign that the sampling rate is insufficient for

the application. Still, the implementation should attempt to deal with it. There are really two

options: either emit the most recent event and discard the remainder (a form of undersampling,

though not quite as detrimental as that previously discussed), or emit the head of the queue

and retain the rest for future time steps. The latter option ensures that event occurrences are

never lost, but it has the potential to build up an increasing backlog of event occurrences. It

relies on the sampling rate on average exceeding the event-occurrence rate, thereby allowing

any backlog of events to be cleared. The embeddings described in this chapter use this latter

option.

The preceding discussion should have demonstrated that it can be important to give different

treatment to the different signal kinds. This is one of the motivations for a multi-kinded

conceptual model. By way of comparison, consider the UFRP-based Yampa implementation,

where events are embedded in conceptually continuous-time signals. The delay signal function

is designed for continuous-time signals, and thus performs oversampling and undersampling.

However, being polymorphic in its signal type, it can also be applied to event signals. This

leads to the elimination and duplication of event occurrences. Yampa does also provide a

specialised signal function for delaying event signals, which behaves as delayE . However, this

relies on the programmer remembering to use this instead of the standard delay when dealing

with event signals. This can lead to subtle errors in Yampa programs.

5.5 Conclusions

This chapter defined embedded implementations of the N-ary FRP language within both Agda

and Haskell. As Agda checks the totality and termination of all functions, the (Agda) im-

plementation is guaranteed to be productive [118]. That is, execution of a signal function by

repeated application of the step function will produce each output sample within finite time,

and without run-time errors. The same guarantee is not provided by the Haskell implementa-

tion, but the close correspondence between the two can at least provide a degree of confidence

in the Haskell embedding.

The design of these implementations is quite similar to that of Yampa [92], which is un-

surprising given they both take signal functions to be the primary reactive abstraction. The

main difference is that Yampa uses a shallow embedding for the routing primitives and dynamic

combinators (rather than the deep embedding employed here). The latest version of Yampa

also contains a significant amount of optimisations, which complicate the implementation some-

what [90]. However, in essence, Yampa is based around a core data type containing a transition

function:

data SF a b = SF (Dt → a → (SF a b, b))

This continuation-style transition function is expressive enough to encapsulate any internal

CHAPTER 5. EMBEDDED IMPLEMENTATIONS OF N-ARY FRP 60

state, so the type of the state does not need to be made explicit. N-ary FRP could be imple-

mented in this same style in both Haskell and Agda. In the Agda embedding this would require

explicit use of coinduction (as it is a coinductive data type), and rswitch would again have to

be a primitive to be accepted by Agda’s termination checker (for essentially the same reasons

as discussed in Section 5.2.2).

Finally, this chapter discussed the delay signal functions as an example of how multi-kinded

signals allow an implementation to better respect the conceptual model. Single-kinded models

that embed event signals in continuous-time signals cannot protect the abstractions of event

signals to the same extent.

Chapter 6

Temporal Logic

Central to FRP is the notion of time-varying values called signals. Reasoning about signals can

be facilitated by using concepts from temporal logic [124], which is the logic of time-varying

properties. This chapter gives a brief introduction to temporal logic, introduces a selection of

temporal operators, and then uses them to define a number of properties of signal functions

pertaining to the N-ary FRP setting.

6.1 Introduction

Temporal logics are modal logics in which propositions are quantified over time. For example,

assuming some proposition Φ, typical temporal logic statements might be “eventually it will be

the case that Φ”, or “Φ has always been the case”.

A temporal logic consists of an underlying time domain of quantification, a set of time-

dependent propositions, and a set of temporal operators that extend propositions over time.

Further propositions and operators can then be defined in terms of these primitives, allowing

time-dependent properties to be expressed intuitively and concisely.

Temporal logic is a well-established means of specifying and reasoning about reactive systems

[65, 81, 83, 85]. The approach taken in this thesis is not to work within any particular temporal

logic, but to instead take several well-known temporal operators and define them directly as

logical combinators. Some properties will be expressed entirely by these operators (i.e. purely

in temporal logic), while others will only be partially defined by them.

Temporal logics vary depending on the nature of the underlying time domain. Time can be

either continuous or discrete, of finite or infinite duration, and either branching, linear or cyclic

in shape. A linear or branching time domain may (or may not) have a first point or an end

point. The (conceptual) time domain of FRP is that of the non-negative real numbers. This is

a continuous, linear and infinite domain with a first point but no end point.

6.2 Temporal Operators

Temporal logic is concerned with time-varying properties; that is, properties that hold at some

points in time but not others. These temporal predicates are formulated as follows:

61

CHAPTER 6. TEMPORAL LOGIC 62

TPred = Time → Set

Temporal operators map temporal predicates to temporal predicates. Some properties can be

expressed entirely by such operators, which avoids having to explicitly mention any time values

in their definitions.

The required temporal operators can be divided into two groups: lifted logical operators and

Priorean operators.

6.2.1 Lifted Logical Operators

The standard logical operators can be lifted to the temporal logic level in a pointwise fashion.

For example, a temporal disjunction (ϕ ∨ ψ) holds at any point in time at which either of its

sub-formulae hold:

∨ : TPred → TPred → TPred

(ϕ ∨ ψ) t = ϕ t ⊎ ψ t

Falsehood, truth, conjunction and implication are lifted in a similar manner:

⊥ : TPred

⊥ t = False

⊤ : TPred

⊤ t = True

∧ : TPred → TPred → TPred

(ϕ ∧ ψ) t = ϕ t × ψ t

⇒ : TPred → TPred → TPred

(ϕ ⇒ ψ) t = ϕ t → ψ t

New temporal operators can be constructed from these operators. For example, time-varying

negation can be defined as:

¬ : TPred → TPred

¬ ϕ = ϕ ⇒ ⊥

6.2.2 Priorean Operators

The operators discussed so far only allow temporal predicates to be combined pointwise; that

is, the truth of the composite formula at any point in time depends only upon the truth of

its component formulae at that time point. This section introduces operators that refer to the

past and future. Specifically, the four Priorean temporal operators are considered (originally

conceived by Prior [107]). These are unary operators, and are called Past, Future, History and

Global. For consistency with temporal-logic literature, their denotations will be typeset in bold.

Note that each Priorean operator has a mirror-image operator that is equivalent other than

that the ordering of time is reversed. Thus, an operator can be converted to its mirror image

by replacing all occurrences of less-than in its definition with greater-than.

The Past operator is denoted P, and should be read as “at some point in the past”. That

is, P ϕ holds if ϕ held previously. This is encoded as a dependent product: the point in time at

which ϕ held, the proof that it is an earlier time point, and the proof of ϕ at that time point:

P : TPred → TPred

P ϕ t = Σ Time (λ t ′ → (t ′ < t) × ϕ t ′)

CHAPTER 6. TEMPORAL LOGIC 63

The Future operator is denoted F, and should be read as “at some point in the future”. It

is defined as the mirror image of Past :

F : TPred → TPred

F ϕ t = Σ Time (λ t ′ → (t ′ > t) × ϕ t ′)

The Global and History operators are denoted G and H, and are mirror images of each

other. They should be read as “at all points in the future” and “at all points in the past”,

respectively. They are encoded as dependent functions:

G : TPred → TPred

G ϕ t = (t ′ : Time) → t ′ > t → ϕ t ′

H : TPred → TPred

H ϕ t = (t ′ : Time) → t ′ < t → ϕ t ′

Note that these temporal operators are strict : they exclude the current time from their

domain of quantification. In many temporal logics these operators are instead defined non-

strictly, and in this thesis both are needed. One approach would be to define reflexive (non-

strict) variants of these operators with similar semantic definitions to their strict counterparts,

except using at-most and at-least instead of less-than and greater-than. However, it is preferable

to define these reflexive variants at the temporal logic level, in terms of the existing operators:

Fr : TPred → TPred

Fr ϕ = ϕ ∨ F ϕ

Pr : TPred → TPred

Pr ϕ = ϕ ∨ P ϕ

Gr : TPred → TPred

Gr ϕ = ϕ ∧ G ϕ

Hr : TPred → TPred

Hr ϕ = ϕ ∧ H ϕ

6.3 Introducing and Eliminating Temporal Predicates

As a means of introducing temporal predicates, a time-varying equality is defined by lifting

propositional equality pointwise over time-varying values:
.
= : (Time → A) → (Time → A) → TPred

(f
.
= g) t = f t ≡ g t

A temporal predicate can be converted into a time-invariant property by requiring it to

hold at all points in time:

Always : TPred → Set

Always ϕ = ∀ t → ϕ t

6.4 Properties of Time

Depending on the time-domain of a temporal logic, different temporal formulae are valid. This

allows some properties of the underlying time domain to be defined at the temporal-logic level

by stating temporal logic formulae that hold if and only if the time domain has that property

[124]. For example, assuming a linear time domain, the properties of time being dense, and of

having a first point and an end point can be expressed as follows:

CHAPTER 6. TEMPORAL LOGIC 64

Density : Set

Density = ∀ ϕ → Always (F ϕ ⇒ F (F ϕ))

FirstPoint : Set

FirstPoint = Always (Pr (H ⊥))

EndPoint : Set

EndPoint = Always (Fr (G ⊥))

In the FRP time domain, the Density and FirstPoint properties hold, whereas the EndPoint

property does not.

6.5 Properties of N-ary FRP

This section uses the temporal operators to define a number of useful properties of signal vectors

and signal functions. These properties are defined in terms of the conceptual model of N-ary

FRP from Section 4.1.

6.5.1 Pointwise Sample Equality

In the N-ary FRP model, signal vectors are not simply functions from time to value. Conse-

quently, the time-varying equality from Section 6.3 cannot be used directly to define a pointwise

equality of signal vectors. Instead, the sample function from Section 5.1 is used to define a

pointwise sample equality :

EqSample : SigVec as → SigVec as → TPred

EqSample s1 s2 = sample s1
.
= sample s2

Other notions of pointwise signal-vector equality are also possible, as will be discussed in

Section 8.3.2.

6.5.2 Causality and Decoupledness

As discussed in Section 3.2.2, all signal functions are required to be temporally causal. That

is, the output of a signal function at any time t is uniquely determined by its input over the

interval [0, t]. This can be formulated as follows:

Causal : SF as bs → Set

Causal sf = ∀ s1 s2 → Always (Hr (EqSample s1 s2) ⇒ EqSample (sf s1) (sf s2))

Intuitively, this says that a signal function sf is causal if, for any two signal vectors s1 and s2,

s1 and s2 having been equal up to any time point implies that sf s1 and sf s2 are equal at that

time point.

A related notion is temporal decoupledness. Informally, a signal function is temporally decou-

pled if its output at time t is uniquely determined by its input over the interval [0, t). Crucially,

this excludes its input at time t . This can be formulated as follows:

Decoupled : SF as bs → Set

Decoupled sf = ∀ s1 s2 → Always (H (EqSample s1 s2) ⇒ EqSample (sf s1) (sf s2))

The term decoupled has many different meanings, but in this thesis decoupled signal function

will mean a signal function that is temporally decoupled.

CHAPTER 6. TEMPORAL LOGIC 65

As will be discussed in Chapter 7, identifying decoupled signal functions is particularly

useful as they can be used to guarantee well-defined feedback. However, for that purpose, a

stronger version of decoupledness is also required.

Informally, a signal function is strictly decoupled if there exists some time delta (δ : ∆t)

such that the signal function’s output at time t is uniquely determined by its input over the

interval [0, t− δ]. This can be formulated as follows:

StrictlyDec : SF as bs → Set

StrictlyDec sf = Σ ∆t (λ δ →

(∀ s1 s2 → Always (Earlier δ (Hr (EqSample s1 s2)) ⇒ EqSample (sf s1) (sf s2))))

where

Earlier : ∆t → TPred → TPred

Earlier δ ϕ t | t > δ = ϕ (t − δ)

| t < δ = True

Note that strict decoupledness implies decoupledness, and decoupledness implies causality:

StrictlyDec sf → Decoupled sf

Decoupled sf → Causal sf

Finally, note that causality, decoupledness and strict decoupledness correspond to the more

general notions of non-expansive, weakly contractive and strictly contractive functions, respec-

tively [67].

6.5.3 Statelessness

Recall from Chapter 5 that some signal functions are such that they can be implemented with-

out an internal state. These signal functions correspond to lifted pure functions, and are

characterised by their output at any given time point being uniquely determined by their input

at that time point. This can be formulated as follows:

Stateless : SF as bs → Set

Stateless sf = ∀ s1 s2 t1 t2 → sample s1 t1 ≡ sample s2 t2 → sample (sf s1) t1 ≡ sample (sf s2) t2

Note that statelessness trivially implies causality:

Stateless sf → Causal sf

Signal functions that are not stateless are known as stateful signal functions. In other

settings, the terms combinatorial and sequential are used for the same notions as stateless and

stateful, respectively.

6.5.4 Properties of Primitives

This sections considers which properties hold for the N-ary FRP primitive signal functions, and

which properties are preserved by the N-ary FRP primitive combinators. The accompanying

proofs for these properties are not given, but most1 of them have been formally verified in Agda

and the proof scripts are available in the online archive [1].

1The properties of switch and freeze are the main exceptions, though some of the more complicated primitive
signal functions still remain to be addressed.

CHAPTER 6. TEMPORAL LOGIC 66

Causality

In N-ary FRP, the atomic routers, the signal functions produced by the lifting functions, and all

primitive signal functions are causal. Furthermore, all primitive combinators preserve causality:

Causal sf 1 × Causal sf 2 → Causal (sf 1 ≫ sf 2)

Causal sf 1 × Causal sf 2 → Causal (sf 1 &&& sf 2)

Causal sf × (∀ e → Causal (f e)) → Causal (switch sf f)

Causal sf → Causal (freeze sf)

Causal sf → ∀ s t → Causal (frozenSample sf s t)

The final property expresses that if a signal function is causal, then all frozen versions of that

signal function will be causal. The utility function frozenSample is defined as follows:

frozenSample : SF as bs → SigVec as → Time → SF as bs

frozenSample sf s t = sample (snd (freeze sf s)) t

Consequently, all signal functions definable in the N-ary FRP language are causal.

Decoupledness

The atomic routers, and the signal functions produced by the lifting primitives, are not decou-

pled. However, the following primitive signal functions are decoupled:

constantS ,never ,now , integralS , delayC , delayE , delayS , dfromS

The primitive combinators all preserve decoupledness:

Decoupled sf 1 × Decoupled sf 2 → Decoupled (sf 1 ≫ sf 2)

Decoupled sf 1 × Decoupled sf 2 → Decoupled (sf 1 &&& sf 2)

Decoupled sf × (∀ e → Decoupled (f e)) → Decoupled (switch sf f)

Decoupled sf → Decoupled (freeze sf)

Decoupled sf → ∀ s t → Decoupled (frozenSample sf s t)

In the case of sequential composition, there is also the stronger property that the composite

signal function is decoupled if one of the component signal functions is decoupled and the other

is causal:

Decoupled sf 1 × Causal sf 2 → Decoupled (sf 1 ≫ sf 2)

Causal sf 1 × Decoupled sf 2 → Decoupled (sf 1 ≫ sf 2)

Strict Decoupledness

The atomic routers, and the signal functions produced by the lifting primitives, are not strictly

decoupled. However, the following primitive signal functions are strictly decoupled:

constantS ,never ,now , delayC , delayE , delayS

The primitive combinators preserve strict decoupledness is the same manner as decoupledness:

StrictlyDec sf 1 × StrictlyDec sf 2 → StrictlyDec (sf 1 ≫ sf 2)

StrictlyDec sf 1 × StrictlyDec sf 2 → StrictlyDec (sf 1 &&& sf 2)

StrictlyDec sf × (∀ e → StrictlyDec (f e)) → StrictlyDec (switch sf f)

StrictlyDec sf → StrictlyDec (freeze sf)

StrictlyDec sf → ∀ s t → StrictlyDec (frozenSample sf s t)

StrictlyDec sf 1 × Causal sf 2 → StrictlyDec (sf 1 ≫ sf 2)

Causal sf 1 × StrictlyDec sf 2 → StrictlyDec (sf 1 ≫ sf 2)

CHAPTER 6. TEMPORAL LOGIC 67

Statelessness

The atomic routers, and the signal functions produced by the lifting primitives, are stateless.

Additionally, the following primitive signal functions are stateless:

constantS ,never ,filterE , fromS

Statelessness is preserved by the≫, &&& and freeze combinators:

Stateless sf 1 × Stateless sf 2 → Stateless (sf 1 ≫ sf 2)

Stateless sf 1 × Stateless sf 2 → Stateless (sf 1 &&& sf 2)

Stateless sf → Stateless (freeze sf)

Stateless sf → ∀ s t → Stateless (frozenSample sf s t)

The switch combinator does not preserve statelessness as it is inherently stateful: its output

sample at any time point depends on whether the structural switch has occurred prior to that

time point.

Note that Stateless sf → Stateless (freeze sf) only holds under an assumption of signal

function extensionality based on equality of samples: that is, assuming two signal functions are

equal if for all input signal vectors their output samples are equal at all time points:

(∀ s → Always (EqSample (sf 1 s) (sf 2 s))) → sf 1 ≡ sf 2

This is because a frozen signal function has been partially applied to a signal vector up to the

time point at which it was frozen. The same signal function frozen at a different time point

will have been applied to a different amount of input, and thus the two frozen signal functions

will not be intensionally equal. For a signal function to be stateless the output sample (which

includes the frozen signal function in this case) must solely depend on the input sample, and

thus intensionally freeze sf cannot be stateless (as the frozen signal function depends on time).

However, because the frozen signal functions are themselves stateless, they ignore those differing

past inputs and thus are extensionally equal.

6.6 Conclusions

Temporal logic combinators allow time-varying properties to be expressed simply and concisely.

As FRP is based around time-varying entities, such combinators are well suited to formalising

FRP-specific properties.

In most FRP variants, causality is not inherent to the semantic model, but is instead stated

informally as a necessary side-condition. Here, what it means for a signal function to be causal

has been formalised. This allowed the property that all N-ary FRP combinators preserve

causality to be formalised, and thus the desired property that all signal functions in N-ary FRP

are causal can be stated and proven.

The property of a signal function being stateless was also formalised. In other reactive

systems, this property is usually inferred from the implementation of the signal function. Here,

this allows the property to be deduced from the semantic definition of a signal function, without

reference to an implementation. (Though the property is sufficiently simple that this has not

been a cause for concern with other systems.)

Finally, decoupledness and strict decoupledness have been formalised, and the signal func-

tions for which they hold have been identified (and in many cases formally proven). These are

non-trivial properties, and will be used in Chapter 7 to guarantee that feedback is well-defined.

Chapter 7

Type-safe Feedback

This chapter adds a feedback combinator to N-ary FRP, allowing for recursive definitions at the

reactive level. A concern with feedback combinators is that they may allow diverging programs

(ill-defined feedback). To address this, the type system of N-ary FRP is refined such that only

well-defined feedback is well-typed, thereby allowing the absence of ill-defined feedback to be

guaranteed statically. The Agda and Haskell embeddings from Chapter 5 are then extended

accordingly.

While this type system refinement is defined in the context of N-ary FRP, it could also

be applied to other FRP variants provided they have a first-class signal-function abstraction.

Multi-kinded signals and n-ary signal functions are not prerequisites for this approach.

7.1 Causality Analysis

Feedback is a crucial feature in reactive programming as it allows for recursive definitions at the

reactive level, thereby allowing signal functions to be mutually dependent upon one another.

In terms of data-flow networks, recursive definitions correspond to cyclic network structures.

For example, in the Yampa implementation of Space Invaders [27], aliens, guns and missiles

are modelled as signal functions. These game entities are all mutually dependent: the aliens

and guns react to each other by moving and firing missiles, and the aliens and missiles can be

destroyed if they collide. Thus feedback is required so that each game entity can access the

output of the other game entities.

In the context of time-varying signals, there are several notions of feedback to consider:

• Decoupled feedback : the current input to a signal function can depend on its past outputs.

• Instantaneous feedback : the current input to a signal function can depend on its current

output.

• Causal feedback : the current input to a signal function can depend on its past and current

outputs.

• Acausal feedback : the current input to a signal function can depend on its past, current

and future outputs.

68

CHAPTER 7. TYPE-SAFE FEEDBACK 69

Reactive languages vary according to which type of feedback they permit. Acausal feedback

is usually prohibited, but some reactive languages allow causal feedback while others only allow

decoupled feedback. The advantage of restricting feedback to the decoupled variety is that it

is always well-defined. This will be discussed further in Section 7.2.1, but intuitively this is

because at the time the input is needed, the output on which it depends will already have

been computed. On the other hand, instantaneous feedback (which is part of causal feedback)

requires a fixed-point computation at the reactive level, which can diverge in many cases.

However, instantaneous feedback can also be well-defined and useful [82, 117]; ruling it out

altogether prohibits such cases.

Determining if all feedback in a program is well-defined is known as causality analysis

[30, 82, 117]. Many reactive languages perform causality analysis as a compile-time check,

so that ill-defined programs can be rejected statically. This causality check may only permit

decoupled feedback (such as in Signal [120], Lucid Synchrone [30], or Real-Time FRP [128]),

or it may permit causal feedback by checking that all instantaneous feedback is well-defined

(such as in Esterel [117]). On the other hand, some reactive languages permit causal feedback

without performing any causality checks (such as Yampa [92], or the (nameless) experimental

synchronous data-flow languages defined by Edwards and Lee [35] and Lee and Zheng [71]).

Such languages rely on the programmer to ensure that feedback is well-defined, and can deadlock

at run-time if this is not the case.

A program can be ensured to contain only decoupled feedback if all fed-back signals pass

through a decoupled signal function (defined in Section 6.5.2). Thus, causality analysis for

languages that only permit decoupled feedback is a matter of ensuring that a decoupled sig-

nal function appears on all feedback paths. This sort of causality analysis is well-studied for

static networks [30], but not in the presence of dynamism. For example, the latest version of

Lucid Synchrone allows some structural dynamism [17, 22], but at the cost of a very conser-

vative causality analysis: a specific decoupling primitive (a one-time-step delay) must appear

syntactically on all feedback paths, and it must be in a static part of the network [104].

The N-ary FRP variant described in this chapter, which will be called N-ary FRP with Feed-

back, takes the approach of only permitting decoupled feedback, while avoiding the conservative

restrictions of Lucid Synchrone. The basic idea is to encode whether or not a signal function

is decoupled within its type. This way, there is not just one specific decoupling primitive: any

signal function of the decoupled type can be used. The decoupledness of a composite signal

function is computed from that of its components, meaning that user-defined signal functions

can also be used for decoupling (a decoupling primitive does not have to appear syntactically

on the feedback path). Furthermore, this allows decoupling to occur within a dynamic part of

the network, as the type (if not the value) of a residual signal function is known in advance.

7.2 Feedback Combinators

N-ary FRP with Feedback consists of the primitives of N-ary FRP, plus an additional routing

combinator called loop that allows feedback to be expressed. This combinator is based on the

feedback combinator from the Arrows framework [101] (which is used by Yampa), but will prove

slightly more expressive in this setting (see Section 7.2.2).

CHAPTER 7. TYPE-SAFE FEEDBACK 70

Figure 7.1 The N-ary FRP feedback combinator

loop

sfb

sff

The type and semantics of loop are as follows:

loop : SF (as, cs) bs → SF bs cs → SF as bs

loop sff sfb ≈ λ sa → fix ((λ sc → sff (sa, sc)) ◦ sfb)

Intuitively, loop takes two signal functions as arguments, which are called the feed-forward

(sff) and feedback (sfb) signal functions. The feed-forward signal function takes two inputs:

the overall input (sa), and the output of the feedback signal function (sc). The output of the

feed-forward signal function is both the input to the feedback signal function and the overall

output of the combinator. This is best understood graphically: see Figure 7.1.

Note that the definition of loop uses the fixed-point operator fix , which is defined as follows:

fix : (A → A) → A

fix f = f (fix f)

However, fix is not a total function: it is only defined when applied to a function that has a

unique fixed point; otherwise, it diverges. Consequently, it is possible for the loop combinator

to be used to construct ill-defined feedback; for example:

bad : SF as bs

bad = loop sfSnd identity

The next section discusses constraints that are sufficient to ensure that signal functions con-

structed using loop are total.

7.2.1 Well-Defined Feedback

The loop combinator is total if it only applies the fix operator to a signal function that has

a unique fixed point. The keys to ensuring this are the decoupled (and strictly decoupled)

properties of signal functions defined in Section 6.5.2, and Banach’s Fixed-Point Theorem [5]:

Banach’s Fixed-Point Theorem: Any strictly contractive endofunction has a unique fixed

point, and repeated iteration of the function will converge to that fixed point.

Contractive Functions

Formally characterising N-ary FRP’s decoupled and strictly decoupled signal functions as con-

tractive and strictly contractive functions remains as future work; here just the intuition is

given.

CHAPTER 7. TYPE-SAFE FEEDBACK 71

Banach’s theorem is defined on metric spaces, which are sets augmented with a notion of

real-valued “distance” between elements of that set. A function f is contractive if, for any

two elements x and y, the distance between fx and fy is less than the distance between x

and y. Being contractive does not guarantee that a function has a fixed point, as the measure

of distance is dense (and thus the distance could continue to decrease without converging).

However, a strictly contractive function has an additional constraint on the reduction of the

distance at each iteration, such that the iterated function sequence will converge to a fixed

point.

In the case of N-ary FRP, distance corresponds to time. More specifically, the distance

between two signals depends on the first time point at which they differ: the earlier this

time point, the greater the distance. A contractive signal function is one that decreases the

distance, which is true of any decoupled signal function (as the output signal of a decoupled

signal function at any time t can only depend on the input signal before time t). Similarly,

any strictly decoupled signal function is strictly contractive, because each iteration reduces the

distance by a fixed amount of time. As the time domain has a start point (time0), a strictly

decoupled signal function will thus converge after a finite number of iterations.

Furthermore, a decoupled signal function operating over discrete-time signals is also strictly

contractive [61, 67], provided that the discrete-time signals have a finite number of occurrences

in a finite amount of time (as is the case for Event and Step signals in N-ary FRP). This is

because a decoupled signal function will always reduce the distance by at least one occurrence,

and thus will converge after a finite number of iterations.

Totality of loop

The conclusions of the preceding subsection can be formulated as follows:

UniqueFixPoint : SF as as → Set

UniqueFixPoint sf = StrictlyDec sf ⊎ (Decoupled sf × DiscreteSV as)

where

DiscreteSV : SVDesc → Set

DiscreteSV (C) = False

DiscreteSV (E) = True

DiscreteSV (S) = True

DiscreteSV (as, bs) = DiscreteSV as × DiscreteSV bs

This property can be used to derive constraints that ensure loop is total.

First, consider a simpler combinator (shown in Figure 7.2a):

loop0 : SF bs bs → SigVec bs

loop0 sf = fix sf

This combinator is total if either sf is strictly decoupled, or sf is decoupled and its output

contains no Continuous signals. Next consider a variant of this combinator that splits the

signal function into two sequentially composed signal functions (Figure 7.2b):

loop1 : SF cs bs → SF bs cs → SigVec bs

loop1 sff sfb = loop0 (sfb ≫ sff)

This combinator is total if (sfb ≫ sff) has a unique fixed point. As discussed in Section 6.5.4,

the sequential composition (in either order) of a decoupled (or strictly decoupled) signal function

with a causal signal function is a decoupled (or strictly decoupled) signal function. All signal

CHAPTER 7. TYPE-SAFE FEEDBACK 72

Figure 7.2 Deriving the loop combinator

(a)

loop
0

sf

(b)

loop
1

sfb

sff

(c)

loop

sfb

sff

functions in N-ary FRP are causal, thus loop1 sff sfb is total if any of the following conditions

hold:

• sff is strictly decoupled;

• sfb is strictly decoupled;

• sff is decoupled and its output contains no Continuous signals;

• sfb is decoupled and its input contains no Continuous signals.

Finally, loop (Figure 7.2c) can be defined in terms of loop1:

loop : SF (as, cs) bs → SF bs cs → SF as bs

loop sff sfb ≈ λ sa → loop1 (λ sc → sff (sa, sc)) sfb

To determine when this is total, the following lemmas are useful:

Decoupled sff → Decoupled (λ sc → sff (sa, sc))

StrictlyDec sff → StrictlyDec (λ sc → sff (sa, sc))

Thus, loop sff sfb is total if any of the following hold1:

• sff is strictly decoupled;

• sfb is strictly decoupled;

• sff is decoupled, and its output contains no Continuous signals;

• sfb is decoupled, and its input contains no Continuous signals.

7.2.2 Alternative Feedback Combinators

There are many other possible formulations of a feedback combinator. For the Haskell Arrows

framework, Paterson [101] chose a slightly different definition (here renamed arrowLoop to avoid

confusion). His combinator (shown in Figure 7.3a) can be defined in terms of loop as follows:

arrowLoop : SF (as, cs) (bs, cs) → SF as bs

arrowLoop sf = loop sf sfSnd ≫ sfFst

1Intuitively, it seems likely that if the output (as opposed to the input) of sfb does not contain any Continuous
signals, then sff or sfb being decoupled is also sufficient to ensure that loop sff sfb is total; but this remains to
be proved.

CHAPTER 7. TYPE-SAFE FEEDBACK 73

Figure 7.3 Alternative feedback combinators

(a)

arrowLoop

sf

(b)

symLoop

sfb

sff

As sfSnd is not decoupled, the arrowLoop combinator is total if sf is strictly decoupled, or if

sf is decoupled and cs contains no Continuous signals. The reason arrowLoop is not used as

the feedback primitive in N-ary FRP is that this constraint is more restrictive: it does not,

for example, allow the overall output (bs) to depend instantaneously on the overall input (as),

whereas that can be expressed using loop.

In previous work [111], I defined another feedback combinator (renamed symLoop and shown

in Figure 7.3b), which can also be defined in terms of loop:

symLoop : SF (as, cs) (bs, ds) → SF ds cs → SF as bs

symLoop sff sfb = loop sff (sfSnd ≫ sfb) ≫ sfFst

Note that the following lemmas hold (by the properties in Section 6.5.4):

Decoupled sfb → Decoupled (sfSnd ≫ sfb)

StrictlyDec sfb → StrictlyDec (sfSnd ≫ sfb)

Thus, symLoop is total if either sff or sfb is strictly decoupled, or either of them is decoupled

and ds contains no Continuous signals. The reason symLoop is not used as the N-ary FRP

feedback primitive is merely that loop is simpler. The two are interdefinable:

loop : SF (as, cs) bs → SF bs cs → SF as bs

loop sff sfb = symLoop (sff ≫ sfFork) sfb

7.3 Type System for N-ary FRP with Feedback

Having determined sufficient constraints to ensure that feedback is well-defined, the next task is

to encode those constraints in the type system as a form of refinement type [41]. One approach

would be to encode them directly, for example:

loop : (sff : SF (as, cs) bs) → (sfb : SF bs cs)

→ StrictlyDec sff ⊎ StrictlyDec sfb

⊎ (Decoupled sff × DiscreteSV bs) ⊎ (Decoupled sfb × DiscreteSV bs)

→ SF as bs

However, this type is both rather daunting and unsuitable for practical usage. First, while it

could be embedded in a dependently typed language such as Agda, it could not be expressed in

a language such as Haskell. Second, it places an unpleasant proof burden on the programmer.

This section presents an alternative refinement of the type system that is not quite as precise,

but is suitable for embedding in Haskell and does not have the same proof burden.

CHAPTER 7. TYPE-SAFE FEEDBACK 74

The key idea is to index the SF type with the required information [131]. The decoupledness

of a signal function is then given by the value of that index, with each combinator computing

its index from the indices of its component signal functions.

Also, loop is further constrained such that it must be the feedback signal function that is

decoupled (or strictly decoupled):

loop : (sff : SF (as, cs) bs) → (sfb : SF bs cs) → StrictlyDec sfb ⊎ (Decoupled sfb × DiscreteSV bs)

→ SF as bs

This is a little restrictive, but does significantly simplify the type system. Though not done

here, the lost expressiveness could be regained by providing an additional feedback combinator

that requires the feed-forward signal function to be the decoupled one (see Section 7.3.3).

7.3.1 Decoupledness Indices

First, decoupledness information needs to be represented. This is achieved by a data type of

decoupledness values:

data Dec : Set where

cau : Dec -- causal

dec : Dec -- decoupled

The signal function type is then indexed by such a value, giving the following refined conceptual

definition:

SF : SVDesc → SVDesc → Dec → Set

SF as bs cau ≈ {sf ∈ (SigVec as → SigVec bs) | Causal sf }

SF as bs dec ≈ {sf ∈ (SigVec as → SigVec bs) | StrictlyDec sf ⊎ (Decoupled sf × DiscreteSV as)}

It is important to note that this does not divide signal functions into two mutually exclusive

sets. As previously discussed, all decoupled signal functions are causal, and thus (SF as bs dec)

is a subtype of (SF as bs cau). In a host language that provides subtyping, this could be

encoded directly. However, in host languages without subtyping, such as Agda and Haskell,

explicit coercion is required. For this purpose, the following primitive combinator is added:

weaken : SF as bs d → SF as bs cau

weaken sf ≈ sf

Finally, note that the type Dec is isomorphic to Bool . Indeed, Booleans could have been

used for this purpose; the Dec type was introduced only for clarity. Conjunction and disjunction

can thus be overloaded onto Dec, equating dec with true and cau with false:

∨ : Dec → Dec → Dec

dec ∨ d = dec

cau ∨ d = d

∧ : Dec → Dec → Dec

dec ∧ d = d

cau ∧ d = cau

7.3.2 Refined Primitives

The refined types of the N-ary FRP primitives are given in Listing 7.1. Note that signal

functions are indexed dec or cau, and that combinators compute their decoupledness from that

of their components using Boolean operators. These values and formulae come directly from

the properties in Section 6.5.4.

CHAPTER 7. TYPE-SAFE FEEDBACK 75

Listing 7.1 Primitives of N-ary FRP with Feedback

identity : SF as as cau

sfFst : SF (as, bs) as cau

sfSnd : SF (as, bs) bs cau

≫ : SF as bs d1 → SF bs cs d2 → SF as cs (d1 ∨ d2)

&&& : SF as bs d1 → SF as cs d2 → SF as (bs, cs) (d1 ∧ d2)

switch : SF as (bs,E A) d1 → (A → SF as bs d2) → SF as bs (d1 ∧ d2)

freeze : SF as bs d → SF as (bs,C (SF as bs d)) d

loop : SF (as, cs) bs d → SF bs cs dec → SF as bs d

weaken : SF as bs d → SF as bs cau

liftC : (A → B) → SF (C A) (C B) cau

liftS : (A → B) → SF (S A) (S B) cau

liftE : (A → B) → SF (E A) (E B) cau

liftC2 : (A → B → Z) → SF (C A,C B) (C Z) cau

liftS2 : (A → B → Z) → SF (S A, S B) (S Z) cau

merge : (A → Z) → (B → Z) → (A → B → Z) → SF (E A,E B) (E Z) cau

join : (A → B → Z) → SF (E A,E B) (E Z) cau

sampleWithC : (A → B → Z) → SF (C A,E B) (E Z) cau

sampleWithS : (A → B → Z) → SF (S A,E B) (E Z) cau

constantS : A → SF as (S A) dec

never : SF as (E A) dec

now : SF as (E Unit) dec

notYet : SF (E A) (E A) cau

filterE : (A → Bool) → SF (E A) (E A) cau

hold : A → SF (E A) (S A) cau

edge : SF (S Bool) (E Unit) cau

when : (A → Bool) → SF (C A) (E A) cau

integralS : SF (S R) (C R) dec

integralC : SF (C R) (C R) cau

fromS : SF (S A) (C A) cau

dfromS : A → SF (S A) (C A) dec

delayC : T ime+ → (Time → A) → SF (C A) (C A) dec

delayS : T ime+ → A → SF (S A) (S A) dec

delayE : T ime+ → SF (E A) (E A) dec

The interesting case is of course loop:

loop : SF (as, cs) bs d → SF bs cs dec → SF as bs d

The feedback signal function is required to be decoupled, thereby ensuring that only well-defined

feedback is well-typed.

Note that integralC is typed as causal. However, there are many different means for an

implementation to compute an integral; some decoupled, some not. In practice, reactive lan-

guages that are concerned with numerical accuracy provide several integration methods and let

the programmer choose the one most suitable for the task at hand. Thus, in some instances,

integralC will be decoupled.

7.3.3 An Additional Feedback Combinator

As previously mentioned, the type of loop is more constrained than it needs to be, as it excludes

the case where the feed-forward signal function is the decoupled one. The more general version

would have the following type:

generalLoop : SF (as, cs) bs d1 → SF bs cs d2 → d1 ∨ d2 ≡ dec → SF as bs d1

CHAPTER 7. TYPE-SAFE FEEDBACK 76

However, this uses a data type of propositional equality, which, while embeddable in some

host-languages [45, 73], unnecessarily complicates the type system. A simpler option would be

to provide an additional feedback combinator that requires the feed-forward signal function to

be decoupled, for example:

loop′ : SF (as, cs) bs dec → SF bs cs d → SF as bs dec

It is almost possible to express such a combinator in terms of loop. However, the type system

isn’t precise enough to recognise that the resultant signal function is decoupled, typing it as

causal instead:

loop′ : SF (as, cs) bs dec → SF bs cs d → SF as bs cau

loop′ sff sfb = loop (sfSecond (forkFirst sfb) ≫ sfAssocL) (sfFst ≫ sff) ≫ sfSnd

In general, the type system of N-ary FRP with Feedback is conservative in that some

information about which output signals are temporally decoupled from which input signals is

lost when using combinators. This lack of precision will be addressed in Section 9.3.

7.4 Feedback Example

As previously mentioned, the FRVR project [12] exploits the ability to freeze signal functions as

a means of saving and resuming the world state. Feedback is also essential to that functionality.

This section demonstrates how such functionality could be encoded, serving both as a non-

trivial example of feedback, and as an example of a situation where the type system prevents

instantaneous feedback from being inadvertently defined.

7.4.1 Saving and Resuming

Intuitively, the save-and-resume behaviour is achieved by freezing the signal function that needs

to be saved, feeding it back as an additional input, then switching it in when resumption is

required. This is best broken down into several combinators.

First, consider a combinator that saves the state of a signal function whenever an input

event is received. Essentially, this is simply a matter of sampling the output of freeze:

save : SF as bs d → SF (as,E A) (bs,E (SF as bs d)) cau

save sf = sfFirst (freeze sf) ≫ sfAssocR ≫ sfSecond sampleC

Next, consider the following combinator that replaces the subordinate signal while main-

taining the saving behaviour (using the replace combinator from Section 4.3.1):

saveReplace : SF as bs d → SF ((as,E A),E (SF as bs d)) (bs,E (SF as bs d)) cau

saveReplace sf = replace (save sf) save

The first input event signal (E A) controls when saving occurs; the second input event signal

(E (SF as bs d)) controls when replacing occurs (and carries the replacement signal function).

Finally, the desired saving and resuming behaviour is achieved by closing the feedback loop

such that the replacement signal function is taken from the most recently saved signal function.

This is achieved by feeding back the saved signal function, storing it in a holding signal function,

and sampling that held signal function with the resume event (E B):

saveResume : SF as bs d → SF ((as,E A),E B) bs cau

saveResume sf = symLoop (sfAssocR ≫ sfSecond (sfSwap ≫ sampleC) ≫ saveReplace sf) (dhold sf)

CHAPTER 7. TYPE-SAFE FEEDBACK 77

Note the use of dhold rather than hold . Had hold been used, this would have created ill-defined

instantaneous feedback. However, the type of symLoop is as follows:

symLoop : SF (as, cs) (bs, ds) d → SF ds cs dec → SF as bs d

Using hold (which is causal) would therefore be type incorrect, and thus the type system

prevents this mistake.

7.4.2 Hypothetical Syntax

The point-free style of programming makes the definitions of save and saveResume somewhat

hard to follow. As discussed in Section 3.4.6, an implementation would be expected to provide

more convenient syntax. For example, in (hypothetical) arrow-like notation, the save and

saveResume functions might be expressed as follows:

save : SF as bs d → SF (as,E A) (bs,E (SF as bs d)) cau

save sf = proc (sa, se) → do

(sb, ssf) ← freeze sf −≺ sa

se′ ← sampleC −≺ (ssf , se)

identity −≺ (sb, se′)

saveResume : SF as bs d → SF ((as,E A),E B) bs cau

saveResume sf = proc (sae, se) → do

se′ ← sampleC −≺ (ssf , se)

(sb, sesf) ← saveReplace sf −≺ (sae, se′)

ssf ← dhold sf −≺ sesf

identity −≺ sb

7.5 Extending the Agda Embedding

This section extends the Agda embedding from Chapter 5 to N-ary FRP with Feedback. As

previously noted, Agda performs totality and termination checks. Thus, the implementation is

confirmed not to allow ill-defined feedback.

Much of the extended embedding is unchanged (or has only trivial changes) from that in

Chapter 5. Consequently, only the noteworthy modifications are discussed in this section; the

complete code can be found in Appendix C.3.

7.5.1 A Decoupled Transition Function

The core of the implementation in Chapter 5 was a transition function with the following type:

∆t → Q → Sample as → Q × Sample bs

This will be referred to as a causal transition function.

Recall that in this style of sampled implementation, the state (Q) is a means of record-

ing any required information about past inputs. For a decoupled signal function, the output

sample cannot depend on the current input sample, but it can depend on past input samples

(the internal state). However, the updated state can depend upon the current input sample.

This suggests that an implementation of decoupled signal functions should be built around a

decoupled transition function of the following type:

∆t → Q → (Sample as → Q) × Sample bs

CHAPTER 7. TYPE-SAFE FEEDBACK 78

This is similar to the causal transition function, except that the output sample no longer

depends on the input sample. Variants of this decoupled transition function will be ubiquitous

in the following implementation.

7.5.2 Nodes

Primitive signal functions may or may not be decoupled. The Node data type, which represents

primitive signal functions, is thus extended with a decoupled case:

data Node (as bs : SVDesc) : Dec → Set where

cnode : ∀ {Q } → (∆t → Q → Sample as → Q × Sample bs) → Q → Node as bs cau

dnode : ∀ {Q } → (∆t → Q → (Sample as → Q) × Sample bs) → Q → Node as bs dec

Observe that the cnode constructor contains a causal transition function and is indexed cau,

whereas the dnode constructor contains a decoupled signal function and is indexed dec.

The stepNode function is then modified accordingly:

stepNode : ∀ {as bs d } → ∆t → Node as bs d → Sample as → Node as bs d × Sample bs

stepNode δ (cnode f q) sa = first (cnode f) (f δ q sa)

stepNode δ (dnode f q) sa = first (λ g → dnode f (g sa)) (f δ q)

The stepNode function is itself a causal transition function. A decoupled version of stepNode

can be defined, but only for decoupled nodes:

dstepNode : ∀ {as bs } → ∆t → Node as bs dec → (Sample as → Node as bs dec) × Sample bs

dstepNode δ (dnode f q) = first (λ g sa → dnode f (g sa)) (f δ q)

Agda accepts this function as total because the type index dec does not match that of the cnode

constructor; that is, there cannot be a cnode case. Without the type indices, this function would

be partial.

7.5.3 Signal Functions

Modifying the signal-function data types (from Listing 5.2) is fairly straightforward (shown

in Listing 7.2). The main differences are the addition of decoupledness indices, and the new

constructors for the loop and weaken combinators. Also, in SF the prim constructor is split

into two. This is because, in the unmodified SF data type, prim contains a causal transition

function (to apply in the initialisation step), and thus an additional constructor with a decoupled

transition function is needed (so that the initial output sample of a decoupled signal function

does not depend on its initial input sample). This is not required for SF ′, as its prim constructor

does not contain a transition function.

Modifying the step functions requires more work. Only step0 is discussed, as the modifica-

tions to step′ are essentially the same. The cases for the new constructors are as follows:

step0 : ∀ {d as bs } → SF as bs d → Sample as → SF ′ as bs d × Sample bs

step0 (dprim f sb) sa = (prim (f sa), sb)

step0 (weakener sf) sa = first weakener (step0 sf sa)

step0 (looper sff sfb) sa with dstep0 sfb

... | (g, sc) with step0 sff (sa, sc)

... | (sff ′, sb) = (looper sff ′ (g sb), sb)

The dprim and weakener cases are straightforward. The interesting case is looper, as one would

expect given that this is where the feedback happens. Intuitively, the situation is that both

CHAPTER 7. TYPE-SAFE FEEDBACK 79

Listing 7.2 Indexed signal functions

data SF : SVDesc → SVDesc → Dec → Set where

cprim : ∀ {as bs } → (Sample as → Node as bs cau × Sample bs) → SF as bs cau

dprim : ∀ {as bs } → (Sample as → Node as bs dec) → Sample bs → SF as bs dec

arouter : ∀ {as bs } → AtomicRouter as bs → SF as bs cau

seq : ∀ {d1 d2 as bs cs } → SF as bs d1 → SF bs cs d2 → SF as cs (d1 ∨ d2)

fan : ∀ {d1 d2 as bs cs } → SF as bs d1 → SF as cs d2 → SF as (bs, cs) (d1 ∧ d2)

rswitcher : ∀ {d1 d2 as bs A} → SF as (bs,E A) d1 → (A → SF as (bs,E A) d2) → SF as bs (d1 ∧ d2)

freezer : ∀ {d as bs } → SF as bs d → SF as (bs,C (SF as bs d)) d

looper : ∀ {d as bs cs } → SF (as, cs) bs d → SF bs cs dec → SF as bs d

weakener : ∀ {d as bs } → SF as bs d → SF as bs cau

data SF ′ : SVDesc → SVDesc → Dec → Set where

prim : ∀ {d as bs } → Node as bs d → SF ′ as bs d

arouter : ∀ {as bs } → AtomicRouter as bs → SF ′ as bs cau

seq : ∀ {d1 d2 as bs cs } → SF ′ as bs d1 → SF ′ bs cs d2 → SF ′ as cs (d1 ∨ d2)

fan : ∀ {d1 d2 as bs cs } → SF ′ as bs d1 → SF ′ as cs d2 → SF ′ as (bs, cs) (d1 ∧ d2)

rswitcher : ∀ {d1 d2 as bs A} → SF ′ as (bs,E A) d1 → (A → SF as (bs,E A) d2) → SF ′ as bs (d1 ∧ d2)

freezer : ∀ {d as bs } → SF ′ as bs d → SF ′ as (bs,C (SF as bs d)) d

looper : ∀ {d as bs cs } → SF ′ (as, cs) bs d → SF ′ bs cs dec → SF ′ as bs d

weakener : ∀ {d as bs } → SF ′ as bs d → SF ′ as bs cau

component signal functions require input from the other, and thus there is no natural order

of execution. This is addressed by using dstep0, a decoupled version of step0 (see Listing 7.3).

Because the feedback signal function is decoupled, dstep0 can extract the output of the feedback

signal function before providing its input. Thus the order of execution is: extract the output

from the feedback signal function; execute the feed-forward signal function; provide the input

to the feedback signal function. The crucial point is that this only works because the feedback

signal function is guaranteed to be decoupled; otherwise dstep0 couldn’t be applied to it.

Next consider the dstep0 function itself (Listing 7.3). For unimportant technical reasons, it

is necessary to introduce an auxiliary function (dstepAux 0) that takes a proof that the signal

function has a dec index. There are two key points about dstepAux 0. First, the cases for any

causal signal function can be rendered absurd by pattern matching on the proof. Thus only

the decoupled cases need to be considered. Second, some of the combinators pattern match on

the decoupledness indices of their component signal functions to determine whether they are

decoupled. Once a component signal function is determined to be decoupled, dstep0 can be

recursively applied to it.

The case for seq is the most complicated, so that will be considered as an example. First

the index of sf 1 is pattern matched on. If that index is dec, then sf 1 can be executed using

dstep0. The output sample (sb) can then be used as input to sf 2, which is executed using step0

to produce the overall output sample (sc). Finally, a function is constructed that, given an

input sample (sa), will produce the updated signal function. On the other hand, if sf 1 has

a cau index, then sf 2 must be decoupled (otherwise the composite signal function would not

be). Thus, sf 2 can be executed using dstep0, producing the output sample (sc). Execution

of sf 1 is deferred by placing it within the update function, such that when the input sample

(sa) becomes available, sf 1 is executed using step0, and then the updated signal function is

constructed.

CHAPTER 7. TYPE-SAFE FEEDBACK 80

Listing 7.3 A decoupled step function

dstep0 : ∀ {as bs } → SF as bs dec → (Sample as → SF ′ as bs dec) × Sample bs

dstep0 sf = dstepAux0 sf refl

dstepAux0 : ∀ {d as bs } → SF as bs d → d ≡ dec → (Sample as → SF ′ as bs dec) × Sample bs

dstepAux0 (cprim f) ()

dstepAux0 (dprim f sb) refl = (prim ◦ f , sb)

dstepAux0 (arouter r) ()

dstepAux0 (seq {dec} sf 1 sf 2) refl with dstep0 sf 1
... | (g, sb) with step0 sf 2 sb

... | (sf ′2, sc) = ((λ sa → seq (g sa) sf ′2), sc)

dstepAux0 (seq {cau} {.dec} {as } {bs } {cs } sf 1 sf 2) refl with dstep0 sf 2
... | (g, sc) = (aux , sc)

where aux : Sample as → SF ′ as cs dec

aux sa with step0 sf 1 sa

... | (sf ′1, sb) = seq sf ′1 (g sb)

dstepAux0 (fan {cau} sf 1 sf 2) ()

dstepAux0 (fan {dec} sf 1 sf 2) refl with dstep0 sf 1 | dstep0 sf 2
... | (g1, sb) | (g2, sc) = ((λ sa → fan (g1 sa) (g2 sa)), (sb, sc))

dstepAux0 (rswitcher {cau} sf f) ()

dstepAux0 (rswitcher {dec} sf f) refl with dstep0 sf

... | (g, (sb, nothing)) = ((λ sa → rswitcher (g sa) f), sb)

... | (, (, just e)) with dstep0 (f e)

... | (g, (sb,)) = ((λ sa → rswitcher (g sa) f), sb)

dstepAux0 (freezer sf) refl with dstep0 sf

... | (g, sb) = (freezer ◦ g, (sb, sf))

dstepAux0 (looper sff sfb) refl with dstep0 sff

... | (g, sb) with step0 sfb sb

... | (sfb′, sc) = ((λ sa → looper (g (sa, sc)) sfb′), sb)

dstepAux0 (weakener sf) ()

7.5.4 Constructing Primitives

The construction functions from Section 5.2.4 need to be modified to account for decoupledness.

First, a function to construct a general decoupled signal function is defined as follows:

mkSFdec : ∀ {as bs Q } → (∆t → Q → (Sample as → Q) × Sample bs) → (Sample as → Q)

→ Sample bs → SF as bs dec

mkSFdec f g = dprim (dnode f ◦ g)

The mkSFtimeless and mkSFstateless functions produce causal signal functions, so are essen-

tially the same as before. However, as mkSFsource and mkSFchangeless produce decoupled

signal functions, they should be defined in terms of mkSFdec:

mkSFsource : ∀ {as bs Q } → (∆t → Q → Q × Sample bs) → Q → Sample bs → SF as bs dec

mkSFsource f q = mkSFdec ((result2 ◦ first) const f) (const q)

mkSFchangeless : ∀ {as bs } → Sample bs → SF as bs dec

mkSFchangeless sb = mkSFsource (λ → (unit, sb)) unit sb

Note that mkSFchangeless is now defined in terms of mkSFsource, as defining it in terms of

mkSFstateless would hide that it constructs decoupled signal functions. Having done this, most

of the primitive signal function definitions do not require any modification. The exceptions are

dfromS , integralC , and the delay family, which are now defined using mkSFdec. For example:

dfromS : ∀ {A} → A → SF (S A) (C A) dec

dfromS = mkSFdec (λ q → (id , q)) id

CHAPTER 7. TYPE-SAFE FEEDBACK 81

7.5.5 Drawbacks of the Agda Embedding

A drawback of this particular approach comes from the way type-level Booleans (the Dec type)

have been embedded. The logical operators are defined by pattern matching on their first

argument, which means that the first argument has to be known in order for the operator

to β-reduce. Much of the time the first argument is known, and so this is not a problem,

but sometimes when defining new combinators the first argument is not known. Consider, for

example, the combinators sfFirst and sfSecond . There is no problem when defining sfSecond ,

as the index of identity is known:

sfSecond : ∀ {d as bs cs } → SF bs cs d → SF (as, bs) (as, cs) cau

sfSecond sf = identity ∗∗∗ sf

The index of sfSecond is computed to be (cau ∧ d), which β-reduces to cau.

However, in the case of sfFirst , the index is computed to be (d ∧ cau), which does not

β-reduce. This can be dealt with in numerous ways in Agda, the simplest of which is to pattern

match on the Dec index when defining the combinator. For example:

sfFirst : ∀ {d as bs cs } → SF as bs d → SF (as, cs) (bs, cs) cau

sfFirst {cau} sf = sf ∗∗∗ identity

sfFirst {dec} sf = sf ∗∗∗ identity

While not hindering the expressiveness of N-ary FRP with Feedback, this is nonetheless a

blemish in the embedding of the type system. This will be discussed further in Section 7.7.

7.6 Extending the Haskell Embedding

This section extends the Haskell embedding from Chapter 5 to N-ary FRP with Feedback. Most

of this corresponds closely with the extensions to the Agda embedding in the previous section,

so only noteworthy differences are discussed. The remainder of the source code can be found

in Appendix C.4

7.6.1 Decoupledness Indices

As with signal vector descriptors, decoupledness indices are represented as empty data types:

data Dec :: ∗

data Cau :: ∗

The required Boolean operations over these indices are defined using type families. To allow

these to be written in infix form, the Type Operators GHC option is required:

{-# LANGUAGE TypeOperators #-}

type family d1 ∨ d2 :: ∗

type instance Cau ∨ d2 = d2

type instance Dec ∨ d2 = Dec

type family d1 ∧ d2 :: ∗

type instance Cau ∧ d2 = Cau

type instance Dec ∧ d2 = d2

Recall that the step function in the Agda embedding pattern matches on decoupledness

indices. This cannot be done here: the indices are encoded as types, and Haskell does not

permit pattern matching on types.

CHAPTER 7. TYPE-SAFE FEEDBACK 82

This difficulty can be overcome by using the technique of representation types (also known as

singleton types) [88, 116]. The basic idea is to reflect the type at the data level, and then pattern

match on that data. This is achieved by defining a type-indexed GADT, with a constructor for

each type of interest. Pattern matching on the GADT then has the effect of pattern matching

on the type index.

A representation type for decoupledness is defined as follows:

data DRep :: ∗ → ∗ where

Dec :: DRep Dec

Cau :: DRep Cau

Pattern matching requires an element of the type to match on. Such an element can be

acquired by defining a Decoupled type class that provides a function mapping a signal function

to a representation of its decoupledness index:

class Decoupled d where

drep :: SF as bs d → DRep d

instance Decoupled Cau where

drep = Cau

instance Decoupled Dec where

drep = Dec

Note that drep does not use the value of the signal function: the DRep is computed entirely

from its type.

Whenever it is necessary to pattern match on the index of a signal function, drep can produce

a representation of that index, and then that representation can be pattern matched on. For

example, the case for sequential composition in the dstep0 function is encoded as follows:

dstep0 (Seq sf1 sf2) = case drep sf1 of

Dec→ let (g, sb) = dstep0 sf1

(sf2 ′, sc) = step0 sf2 sb

in ((λsa → Seq′ (g sa) sf2 ′), sc)

Cau→ let (g, sc) = dstep0 sf2

in (λsa → let (sf1 ′, sb) = step0 sf1 sa

in Seq′ sf1 ′ (g sb)

, sc)

Because of this pattern matching technique, the definition can proceed in essentially the same

manner as its Agda counterpart (see Listing 7.3).

7.6.2 Drawbacks of the Haskell Embedding

The remainder of the implementation is sufficiently similar to the Agda embedding that the code

is relegated to Appendix C.4. However, it is also similar enough to suffer from the same blemish

discussed in Section 7.5.5: the decoupledness indices do not always β-reduce when defining new

combinators. There are fewer ways of dealing with this in Haskell, but the technique of pattern

matching on the index is sufficient. For example, sfFirst is defined as follows:

sfFirst :: Decoupled d ⇒ SF as bs d → SF (as, cs) (bs, cs) Cau

sfFirst sf = case drep sf of

Cau→ sf ∗∗∗identity

Dec → sf ∗∗∗identity

CHAPTER 7. TYPE-SAFE FEEDBACK 83

7.7 Conclusions

This chapter defined an FRP variant called N-ary FRP with Feedback, which consists of N-ary

FRP extended with a feedback combinator and a refined type system. The type system refine-

ment ensures that only well-defined feedback is well-typed. The Agda and Haskell embeddings

of N-ary FRP were then extended to N-ary FRP with Feedback.

As discussed in Section 7.5.5, the main disadvantage of these embeddings is that the host-

language type checker does not always solve basic decoupledness constraints. This was dealt

with by pattern matching on the decoupledness index, but for practical programming this would

quickly become tiresome. In Agda there are easier methods of dealing with this, such as using

explicit equality proofs to perform substitutions [13]. This is not possible in Haskell as yet,

though there have been proposals for extending Haskell with such functionality [45]. In any

case, this still requires explicit reasoning about Boolean expressions, which is annoying when

the procedure is automateable.

Ideally, one wants functionality such as that provided by Dependent ML [130], where basic

constraints for a limited set of built-in type indices are solved by the type checker. By using

the built-in Booleans of such a language, the decoupledness constraints would be resolved with

no extra effort required by the FRP programmer. Embedding N-ary FRP with Feedback in

Dependent ML would be an interesting avenue for future work.

Finally, note that if N-ary FRP with Feedback was implemented as a stand-along language,

then the type-checker could of course include a Boolean constraint solver and likewise avoid the

problem.

Chapter 8

Change and Optimisation

How to efficiently implement first-order synchronous data-flow networks with static structure

is well-studied [49, 70, 106]. However, dynamism and higher-order data-flow in combination

with support for hybrid systems raise new implementation challenges. FRP implementations

usually adopt either a push or pull driven implementation strategy [37, 62]. The essence of

the push-driven approach is to react to events as they occur by pushing changes through the

system. This is a good fit for discrete-time signals. Pull is the opposite, where the need to

compute the current value of a signal necessitates computing the current values of all signals

it depends on, thus pulling data through the network. This is a good fit for continuous-time

signals. Thus push and pull have complementary strengths, but combining both approaches in

one system is challenging.

This chapter contributes to FRP implementation by studying the notions of signal change

and how change propagates in a highly structurally dynamic signal processing network, and thus

identifying when computation is unnecessary and could be avoided. Hopefully this will help

reconcile the advantages of push and pull. Note that structural dynamism, and that signals can

change just because time passes, make the problem significantly more complex than standard

change propagation in a network with a static structure.

These change properties are studied in the setting of N-ary FRP, which takes signal functions

as the primary reactive abstraction. Many other approaches to FRP instead make signals their

primary notion. However, note that a setting of signal functions is also the natural choice

for studying change and change propagation in a signal processing network: the nodes of the

network are signal functions in the sense discussed in this thesis, regardless of the surface syntax

used to set up the network. Thus much of this study is relevant to FRP in general, not just to

FRP versions based on signal functions.

8.1 FRP Optimisation

In order to be reactive (delivering timely responses to external stimuli), an FRP implementation

must be discretely sampled. Consequently, if notionally continuous-time signals are provided,

a concrete implementation can only approximate the ideal semantics.

However, the aim is to make the approximation as faithful as possible. Here, the semantic

84

CHAPTER 8. CHANGE AND OPTIMISATION 85

distinction between different kinds of signals helps. As discussed in Section 4.1.1, certain uses

of signals can be statically ruled-out by making the kinds manifest in the type system. This

allows employing an implementation strategy that is appropriate for a specific kind of signal, but

which would have risked breaking the abstractions had said uses not been ruled out. Moreover,

this also opens up opportunities for signal-kind–specific optimisations.

This section briefly reviews the two basic FRP implementation strategies, before discussing

the archetypal optimisation opportunities in an FRP system. This provides background and

motivation for the change properties in the next section.

8.1.1 Basic FRP Implementation Strategies

An FRP instance typically employs either a pull-based (demand-driven) or push-based (data-

driven) implementation approach [37, 62].

A pull-based approach repeatedly samples the output signals over a sequence of time steps,

recomputing every signal at each step. This is a good approach for signals that change often,

as is common for continuous-time signals. In fact, the more frequent the changes, the more

efficient this approach. However, a signal that changes only rarely has its value unnecessarily

recomputed repeatedly. This is inefficient and scales poorly, as the total amount of computation

is proportional to the number of signals, not to the signal activity.

In contrast, a push-based approach only recomputes a signal when a signal it depends on

changes. This is a natural fit for discrete-time signals: when nothing changes, no updates are

needed. However, in FRP there are signals that depend on time (and thus can change even if

the signals they depend on do not), as well as signals that (conceptually) change continuously.

The former implies that only reacting to external events is not enough. The second, that there

can be a substantial overhead for using an exclusively push-based approach, as a continuous

signal would trigger a recomputation at every time step.

Ideally, one would like to employ both strategies selectively, to reap the benefits of each.

Developing an understanding of how change works in a setting of dynamic hybrid signal function

networks is a step in that direction.

8.1.2 Optimisation Opportunities

For most networks, many signals will be unchanging for significant periods of time, with changes

occurring sparsely compared with the sampling rate. Also, given the dynamic nature of FRP

and the combinator style used to construct networks, it is very common for:

• signals to be used for a while, but then later ignored;

• signals to change for a while, before becoming constant (consider inelasticBall from

Section 3.3.4).

An implementation should optimise as much as possible based on these observations, without

breaking any abstractions.

The optimisations considered in this chapter can be divided into two archetypes: change

propagation and structural optimisation. Change propagation involves identifying which signal

CHAPTER 8. CHANGE AND OPTIMISATION 86

functions are such that their output will not change unless their input does. When execut-

ing such signal functions, there is no need to recompute their output while their input does

not change. Structural optimisation involves simplifying the network structure by eliminating

unnecessary signal functions and combinators, with the aim of making future execution more

efficient. To recognise when and where such optimisations are valid, unchanging and unused

signals need to be tracked. To this end, it is necessary to determine which signal functions

produce unchanging signals, and which signal functions do not use their inputs.

By distinguishing between the three signal kinds, these properties of signals and signal

functions can be more precisely tracked, hence making it possible to apply more precise optimi-

sations. For example, Continuous signals are likely to be always changing, no matter how rapid

the sampling rate. On the other hand, Step signals tend to change only sparsely, and are thus

likely to benefit greatly from change-propagation optimisations. By combining this knowledge

with knowledge about how signal functions are affected by change, it becomes possible to select

appropriate implementation and optimisation strategies in a fine-grained manner.

8.2 Measuring Efficiency

A reactive system is discretely sampled during execution, regardless of whether the individual

samples are triggered by “pushes” or “pulls”. In the former case the samples will be at irregular

intervals, whereas in the latter case they may be at either regular or irregular intervals. In the

following discussion, references to the sampling rate will mean the frequency of sampling if

regularly sampled, or the average frequency if irregularly sampled.

Many reactive applications either specify some requirement of the sampling rate of the

system (such as a minimum or desired rate), or consider the quality of the system performance

to be proportional to the sampling rate. Typically, push-based systems require the sampling

rate to be at-least the rate of internal “push” events, otherwise a backlog of events will build up.

On the other hand, pull-based systems often have a desired rate of sampling, with performance

degrading as the sampling rate falls, and perhaps also a minimum sampling rate beyond which

the system’s performance is unacceptable. Consequently, one good measure of the efficiency of

an implementation of a reactive language is the maximum sampling rate it can support. Of

course, the maximum sampling rate of any given implementation will vary depending on the

complexity of the application: an implementation that can sample rapidly enough for one small

application may not be able to sample rapidly enough for another larger application. This

makes it hard to measure an implementation’s absolute efficiency in this way, but it does allow

the relative efficiency of two different implementations to be approximated by comparing their

maximum sampling rates for some benchmark applications. There are of course other measures

of efficiency that could be considered, such as space usage or reaction latency (the time between

the system receiving an input and a corresponding output sample being produced). In this

chapter, “efficiency” refers primarily to the rate of sampling, with the aim being to identify

optimisations that increase the maximum sampling rate. Note however that many optimisations

that reduce the sampling rate also reduce space usage and reaction latency.

Comparing the relative efficiency of existing reactive languages, implementations, and their

optimisations, is beyond the scope of this thesis. However, the following two test cases should

CHAPTER 8. CHANGE AND OPTIMISATION 87

give a rough idea of the scale of existing sampling rates. These results were obtained on a Dual

Core 2Ghz Intel laptop running Ubuntu 10.10, and the code was compiled using GHC 6.12

with optimisations switched on. In both cases, the implementations were set to sample at the

maximum rate possible.

The first test case consisted of 50 copies of the elasticBall signal function (Section 4.3.2)

running in parallel (each with a different initial configuration). The Haskell embedding of N-ary

FRP described in Section 5.3 achieved an average sampling rate of 280 samples per second. As a

comparison, the latest version of Yampa achieved an average sampling rate of 5100 samples per

second. This difference is unsurprising, as the Yampa implementation incorporates a significant

amount of optimisation [90].

The second test case uses the playNotes signal function, taken from the Yampa Synthesiser

[42, Section 3]. This signal function converts a sequence of MIDI note numbers into audio

signals, immediately ending a note when the next input note is received (thus it is only ever

computing a single note at a time). The test consisted of running 50 copies of playNotes in

parallel; that is, computing 50 notes simultaneously. The Haskell embedding of N-ary FRP

achieved an average sampling rate of 300 samples per second, while Yampa achieved 4100

samples per second.

Further experimentation varying the number of balls (or notes) in each test case suggested

that Yampa typically achieves a sampling rate between three and twenty times faster than the

N-ary FRP implementation.

8.3 Change Properties

This section considers properties of signals and signal functions that could be exploited by

an implementation to enable the kinds of optimisations suggested in Section 8.1. These are

time-varying properties; that is, they may hold at some points in time and not others. They

are expressed in this way to cater for optimisation opportunities that arise dynamically, rather

than just those that are valid statically.

Many of the properties defined in this section are, in isolation, fairly intuitive. However,

the interactions between properties, and recognising which properties hold for specific signal

functions, can be quite subtle. In particular, the combination of structural dynamism with con-

tinuous and discrete time can lead to quite counter-intuitive properties. Consequently, formally

expressing and reasoning about these properties gives a much sounder basis for optimisation

than relying on an intuitive understanding of change.

8.3.1 Unchanging Signals

Many of the proposed optimisations rely on some notion of signals changing. However, most

obvious definitions of change are implementation specific. For example, in a sampled imple-

mentation an obvious definition would be to say that a signal has changed if its current sample

differs from its previous sample. Yet in the conceptual model of N-ary FRP there is no sequence

of time samples. Also, while this would make sense for Continuous or Step signals, it would be

dubious for Event signals. Two identical event occurrences that happen to be adjacent given

CHAPTER 8. CHANGE AND OPTIMISATION 88

some specific sampling strategy should be considered two changes, not a lack of change. Conse-

quently, a more precise definition of change is needed: one that respects the conceptual model

and its multi-kinded signals.

Unchanging at a Point

A signal being unchanging at a time point can be defined at the conceptual level as follows:

• A Continuous signal is unchanging at a time t if there exists a previous time point t0 such

that the signal is constant over the interval [t0, t].

• An Event signal is unchanging at all time points at which there is no event occurrence.

• A Step signal is unchanging at all time points except time0 and the points at which it

assumes a new value.

• A signal vector is unchanging if all signals in that vector are unchanging.

These definitions can be formulated as follows (the utility functions used can be found in

appendices A and B):

UnchangingCP : ChangePrefix A → TPred

UnchangingCP cp t = IsNothing (lookupCP cp t)

UnchangingE : SigVec (E A) → TPred

UnchangingE (ma, cp) t | t ≡ 0 = IsNothing ma

| t > 0 = UnchangingCP cp t

UnchangingS : SigVec (S A) → TPred

UnchangingS (, cp) t | t ≡ 0 = False

| t > 0 = UnchangingCP cp t

UnchangingC : SigVec (C A) → TPred

UnchangingC s t = P (λ t0 → ConstantOver s [t0, t]) t

Unchanging : {as : SVDesc} → SigVec as → TPred

Unchanging {C } s = UnchangingC s

Unchanging {S } s = UnchangingS s

Unchanging {E } s = UnchangingE s

Unchanging { , } (s1, s2) = Unchanging s1 ∧ Unchanging s2

Note that whether a Continuous signal is unchanging only depends on the signal up to and

including the time point. This is done deliberately to keep the definition causal: whether a

signal is unchanging at a time point should not depend on future values of that signal.

If a signal is not unchanging at a time point, then it is said to be changing at that time

point. Observe that both Continuous and Step signals are defined to be changing at time0; this

choice is discussed in Section 8.5.3.

Unchanging over an Interval

Next, a signal being unchanging over an interval is considered:

UnchangingOver : {as : SVDesc} → SigVec as → (t1 t2 : Time) → Set

UnchangingOver {C } s t1 t2 = ConstantOver s [t1, t2]

UnchangingOver {E } (, cp) t1 t2 = t1 < t2 → cp t1 ≡ cp t2

UnchangingOver {S } (, cp) t1 t2 = t1 < t2 → cp t1 ≡ cp t2

UnchangingOver { , } (s1, s2) t1 t2 = UnchangingOver s1 t1 t2 × UnchangingOver s2 t1 t2

CHAPTER 8. CHANGE AND OPTIMISATION 89

Intuitively, UnchangingOver s t1 t2 holds if there are no changes in signal vector s over the

interval (t1, t2].

A left-open interval is chosen as that is simpler to express than a closed interval. A reflexive

variant of this property (corresponding to a closed interval) can then be defined in terms of

UnchangingOver and Unchanging :

UnchangingOverr : SigVec as → (t1 t2 : Time) → Set

UnchangingOverr s t1 t2 = t1 6 t2 → Unchanging s t1 × UnchangingOver s t1 t2

Changeless Signals

The preceding notions of signal change can be used to express the property of a signal vector

being unchanging henceforth. Both a reflexive (including the current time) and a non-reflexive

(excluding the current time) variant are defined.

A signal vector is changeless at a point in time if it is unchanging between that point and

all future time points:

ChangelessSV : SigVec as → TPred

ChangelessSV s t = G (UnchangingOver s t) t

A signal vector is reflexively changeless if it is both unchanging and changeless :

ChangelessSV r : SigVec as → TPred

ChangelessSV r s = Unchanging s ∧ ChangelessSV s

Aside

It may seem that the unchanging over property is superfluous, and that the changeless property

could be defined by extending the unchanging property using the G combinator:

ChangelessSV ′ : SigVec as → TPred

ChangelessSV ′ s = G (Unchanging s)

This would be valid for Step and Event signals, but not for Continuous signals. The problem

stems from continuous time being dense. This is best seen by counter example.

Consider the following continuous-time signal:

gt5 : SigVec (C Bool)

gt5 t = t > 5

This signal clearly changes in value. Yet it changes immediately after a time point, not at a

time point. Consequently, based on the definition of a Continuous signal being unchanging,

there is no point in time at which this signal is changing. As the temporal operator G extends

a temporal predicate over all future points in time, this means that the change would not be

detected. To give a concrete example, ChangelessSV ′ gt5 3 holds, when, intuitively, it should

not.

8.3.2 Another Pointwise Signal Equality

Section 6.5.1 introduced a notion of time-varying signal equality based on pointwise equality

of samples. While suitable for expressing properties such as statelessness, this equality is not

strong enough when reasoning about change. The problem is that the value of a Step signal may

CHAPTER 8. CHANGE AND OPTIMISATION 90

change to the same value it held previously; that is, the change list may contain two equal values

consecutively. By sample equality, such a signal would be considered equal to an (otherwise

identical) signal that lacked the second change. This is unsatisfactory, as when reasoning about

change it is important to distinguish between the presence and absence of change.

One could argue that the fault is in the definition of unchanging, and that a Step signal

should be considered to be unchanging in situations where the value of the change is the same

as the preceding value. However, this would not be as practical for optimisation. With such

a definition, knowing whether a Step signal is unchanging relies on being able to compare two

values for equality. As Step signals are polymorphic in the type of their value, this would require

comparing values of any type for equality, which is in general undecidable.

Consequently, a stronger notion of pointwise signal-vector equality is required. First, the

notion of a representation of a signal vector at a specific point in time is defined, along with a

function to compute that representation:

SVRep : SVDesc → Set

SVRep (C A) = A

SVRep (E A) = Maybe A × ChangeList A

SVRep (S A) = A × ChangeList A

SVRep (as, bs) = SVRep as × SVRep bs

rep : {as : SVDesc} → SigVec as → Time → SVRep as

rep {C } s t = s t

rep {E } (ma, cp) t = (ma, cp t)

rep {S } (a, cp) t = (a, cp t)

rep { , } (s1, s2) t = (rep s1 t , rep s2 t)

Intuitively, this is just applying all time-varying elements of the signal vector to a specific time

value.

A pointwise equality of signal vector representations is then defined:

EqRep : SigVec as → SigVec as → TPred

EqRep s1 s2 = rep s1
.
= rep s2

As mentioned, this is a stronger property than sample equality:

EqRep s1 s2 ⇒ EqSample s1 s2

Pragmatically, it is also much easier to reason with, principally due to the absence of the

auxiliary functions val and occ.

Finally, many of the properties in this section depend on a variant formulation of causality

that takes into account representation equality:

RepCausal : SF as bs → Set

RepCausal sf = ∀ s1 s2 → Always (Hr (EqRep s1 s2) ⇒ EqRep (sf s1) (sf s2))

This property holds for all primitive signal functions in N-ary FRP, and is preserved by all

primitive combinators in the same way as causality based on sample equality.

8.3.3 Change Properties of Signal Functions

This section defines several properties of signal functions. Unlike the properties in Section 6.5,

these are dynamic properties that may come to hold during execution. Thus whether they hold

for a given signal function varies with time, and also depends on the input the signal function

has received up to that time point. Consequently, these properties are expressed as temporal

predicates parametrised over both a signal function and its input signal vector.

CHAPTER 8. CHANGE AND OPTIMISATION 91

Changeless Signal Functions

Signal functions that produce changeless and reflexively changeless signal vectors are expressed

as follows:

Changeless : SF as bs → SigVec as → TPred

Changeless sf s t = ∀ s′ → (Hr (EqRep s s′) ⇒ ChangelessSV (sf s′)) t

Changelessr : SF as bs → SigVec as → TPred

Changelessr sf s t = ∀ s′ → (H (EqRep s s′) ⇒ ChangelessSV r (sf s′)) t

These definitions can be read as saying that a signal function sf , having been applied to a

signal vector s , is changeless at a point in time t , if, for any signal vector s ′ such that s ′ and s

have been identical up to time t , sf s ′ will be unchanging henceforth. Or, more intuitively, no

matter what input is received in the future, the output will be unchanging henceforth.

Change-Propagating Signal Functions

More interesting are signal functions that propagate change; that is, signal functions that pro-

duce unchanging output when given unchanging input. This idea can be split into two main

properties, called change-dependent and change-propagating. A change-propagating signal func-

tion will produce unchanging output over any period in the future for which its input is unchang-

ing. A change-dependent signal function will do likewise, but only over periods that start at

the current time point. Thus change-dependent is a strictly weaker property. These properties

can be formulated as follows (with reflexive variants as usual):

ChangeDep : SF as bs → SigVec as → TPred

ChangeDep sf s t = ∀ s′ →

(Hr (EqRep s s′) ⇒ G (UnchangingOver s′ t ⇒ UnchangingOver (sf s′) t)) t

ChangeDepr : SF as bs → SigVec as → TPred

ChangeDepr sf s t = ∀ s′ →

(H (EqRep s s′) ⇒ Gr (UnchangingOverr s′ t ⇒ UnchangingOverr (sf s′) t)) t

ChangePrp : SF as bs → SigVec as → TPred

ChangePrp sf s = Gr (ChangeDep sf s) ∧ G (ChangeDepr sf s)

ChangePrpr : SF as bs → SigVec as → TPred

ChangePrpr sf s = ChangePrp sf s ∧ ChangeDepr sf s

Recall that UnchangingOver is concerned with left-open intervals, and UnchangingOverr with

left-closed intervals. Thus ChangeDep is concerned with left-open intervals and ChangeDepr

with left-closed intervals. ChangePrp and ChangePrpr are concerned with both (hence the

conjunction), differing only in that ChangePrp excludes left-closed intervals starting at the

current time, whereas ChangePrpr includes them.

Finally, note that the main reason for distinguishing between change-dependent and change-

propagating is that greater precision is then possible when expressing the properties of switch

(see Section 8.3.5).

Source Signal Functions

Signal functions that no longer use their input are called sources. More precisely, a signal

function is a source at a time t if its output after time t does not depend on input after time

CHAPTER 8. CHANGE AND OPTIMISATION 92

t . As ever, this is split into reflexive and non-reflexive variants that include and exclude the

current time:

Source : SF as bs → SigVec as → TPred

Source sf s t = ∀ s′ → (Hr (EqRep s s′) ⇒ G (EqRep (sf s) (sf s′))) t

Sourcer : SF as bs → SigVec as → TPred

Sourcer sf s t = ∀ s′ → (H (EqRep s s′) ⇒ Gr (EqRep (sf s) (sf s′))) t

8.3.4 Implications between Properties

Many of the change properties in the preceding section are strictly stronger or weaker than each

other. The properties that imply other properties are listed below:

Changelessr sf s ⇒ Changeless sf s

Changelessr sf s ⇒ ChangePrpr sf s

Changelessr sf s ⇒ Sourcer sf s

Changeless sf s ⇒ ChangePrp sf s

Changeless sf s ⇒ Source sf s

ChangePrpr sf s ⇒ ChangeDepr sf s

ChangePrpr sf s ⇒ ChangePrp sf s

ChangePrp sf s ⇒ ChangeDep sf s

Sourcer sf s ⇒ Source sf s

Note that reflexively change-dependent does not imply change-dependent. Intuitively, this is

because there could be a change in the input at the current time point.

For most change properties, if they hold at a time point then they continue to hold thereafter.

The exceptions are the change-dependent and reflexively change-dependent properties. This can

be summarised as follows:

Changeless sf s ⇒ G (Changeless sf s)

Changelessr sf s ⇒ G (Changelessr sf s)

ChangePrp sf s ⇒ G (ChangePrp sf s)

ChangePrpr sf s ⇒ G (ChangePrpr sf s)

Source sf s ⇒ G (Source sf s)

Sourcer sf s ⇒ G (Sourcer sf s)

Finally, if a signal function is both change-dependent and a source, then it is changeless :

ChangeDep sf ∧ Source sf ⇒ ChangelessSF sf

Aside

Somewhat counter-intuitively, the reflexive variant of the preceding implication does not hold.

A counter example is the following specialisation of the now primitive:

nowS : SF (S Unit) (E Unit)

nowS = const (just unit, const [])

This signal function is both reflexively change-dependent (it only produces changing output

at time0, when the input is changing), and a reflexive source (it never uses its input) at all

points in time. Yet at time0 it is not reflexively changeless, as it emits an event (a change).

The issue is that there is no possible input signal vector that is unchanging at time0, as Step

signals are always changing at time0. Consequently, the change-dependent property holds when,

intuitively, it should not.

CHAPTER 8. CHANGE AND OPTIMISATION 93

8.3.5 Properties of N-ary FRP Primitives

This section considers which of the properties in the preceding section hold for the N-ary FRP

primitives.

Primitive Signal Functions

The properties that hold for the primitive signal functions at all points in time and for all input

signal vectors are as follows:

• Changeless: constantS , never , now

• Changelessr: never

• ChangeDep: constantS , never , now , notYet , filterE , hold , edge, fromS

• ChangeDepr: never , notYet , filterE , edge, fromS

• ChangePrp: constantS , never , now , notYet , filterE , hold , edge, fromS

• ChangePrpr: never , notYet , filterE , edge, fromS

• Source: constantS , never , now

• Sourcer: constantS , never , now

Lifting Functions and Atomic Routers

At all points in time and for all input signal vectors, the following properties hold for the atomic

routers and for all signal functions produced by the lifting functions:

ChangeDep, ChangeDepr,ChangePrp, ChangePrpr

Routing Combinators

All of the properties are preserved by the routing combinators:

Changeless sf 1 s ∧ Changeless sf 2 (sf 1 s) ⇒ Changeless (sf 1 ≫ sf 2) s

Changelessr sf 1 s ∧ Changelessr sf 2 (sf 1 s) ⇒ Changelessr (sf 1 ≫ sf 2) s

ChangeDep sf 1 s ∧ ChangeDep sf 2 (sf 1 s) ⇒ ChangeDep (sf 1 ≫ sf 2) s

ChangeDepr sf 1 s ∧ ChangeDepr sf 2 (sf 1 s) ⇒ ChangeDepr (sf 1 ≫ sf 2) s

ChangePrp sf 1 s ∧ ChangePrp sf 2 (sf 1 s) ⇒ ChangePrp (sf 1 ≫ sf 2) s

ChangePrpr sf 1 s ∧ ChangePrpr sf 2 (sf 1 s) ⇒ ChangePrpr (sf 1 ≫ sf 2) s

Source sf 1 s ∧ Source sf 2 (sf 1 s) ⇒ Source (sf 1 ≫ sf 2) s

Sourcer sf 1 s ∧ Sourcer sf 2 (sf 1 s) ⇒ Sourcer (sf 1 ≫ sf 2) s

Changeless sf 1 s ∧ Changeless sf 2 s ⇒ Changeless (sf 1 &&& sf 2) s

Changelessr sf 1 s ∧ Changelessr sf 2 s ⇒ Changelessr (sf 1 &&& sf 2) s

ChangeDep sf 1 s ∧ ChangeDep sf 2 s ⇒ ChangeDep (sf 1 &&& sf 2) s

ChangeDepr sf 1 s ∧ ChangeDepr sf 2 s ⇒ ChangeDepr (sf 1 &&& sf 2) s

ChangePrp sf 1 s ∧ ChangePrp sf 2 s ⇒ ChangePrp (sf 1 &&& sf 2) s

ChangePrpr sf 1 s ∧ ChangePrpr sf 2 s ⇒ ChangePrpr (sf 1 &&& sf 2) s

Source sf 1 s ∧ Source sf 2 s ⇒ Source (sf 1 &&& sf 2) s

Sourcer sf 1 s ∧ Sourcer sf 2 s ⇒ Sourcer (sf 1 &&& sf 2) s

In the case of sequential composition, there are also some stronger properties:

Changeless sf 2 (sf 1 s) ⇒ Changeless (sf 1 ≫ sf 2) s

Changelessr sf 2 (sf 1 s) ⇒ Changelessr (sf 1 ≫ sf 2) s

Changeless sf 1 s ∧ ChangeDep sf 2 (sf 1 s) ⇒ Changeless (sf 1 ≫ sf 2) s

Changelessr sf 1 s ∧ ChangeDepr sf 2 (sf 1 s) ⇒ Changelessr (sf 1 ≫ sf 2) s

Source sf 1 s ⇒ Source (sf 1 ≫ sf 2) s

Sourcer sf 1 s ⇒ Sourcer (sf 1 ≫ sf 2) s

Source sf 2 (sf 1 s) ⇒ Source (sf 1 ≫ sf 2) s

Sourcer sf 2 (sf 1 s) ⇒ Sourcer (sf 1 ≫ sf 2) s

CHAPTER 8. CHANGE AND OPTIMISATION 94

Freeze

The freeze combinator preserves the following properties:

Changelessr sf s ⇒ Changelessr (freeze sf) s

Source sf s ⇒ Source (freeze sf) s

Sourcer sf s ⇒ Sourcer (freeze sf) s

As with statelessness (Section 6.5.4), these properties of freeze rely on signal function exten-

sionality. The frozen signal function at any time point is never intensionally equal to the same

signal function frozen at any other time point, and hence the Continuous signal that carries it

is always changing under intensional equality.

Finally, some properties are preserved (or weakened) in a frozen signal function, and then

hold at the moment it is switched-in again (local time0):

Changelessr sf s ⇒ (λ t → (∀ s′ → Changeless (frozenSample sf s t) s′ 0))

ChangePrpr sf s ⇒ (λ t → (∀ s′ → ChangePrp (frozenSample sf s t) s′ 0))

Sourcer sf s ⇒ (λ t → (∀ s′ → Sourcer (frozenSample sf s t) s′ 0))

Note that Changelessr and ChangePrpr are weakened to Changeless and ChangePrp. This

is because a Step or Continuous signal that is unchanging at the point it is switched-out is

nevertheless considered changing at the local time0 when it is switched-in.

The non-reflexive properties do not imply anything about the frozen signal function, as they

are properties that hold at a time t if the signal function has been applied to the input signal

vector up to and including time t . A frozen signal function has been applied to input up to yet

excluding the time point at which it was frozen, and thus the non-reflexive properties are not

preserved in the frozen signal function.

Switch

Because of its dynamic nature, preservation of properties by the switch combinator is slightly

more involved. Essentially, the issue is that the time-varying properties of switch depend on

whether or not the switch has occurred yet. To express this, some auxiliary predicates are

required:

NoOccs : SigVec (E A) → TPred

NoOccs s t = fstOcc s t ≡ nothing

FstOcc : Time × A → SigVec (E A) → TPred

FstOcc e s t = fstOcc s t ≡ just e

NotSwitched : SF as (bs,E A) → SigVec as → TPred

NotSwitched sf s = NoOccs (snd (sf s))

Switched : Time × A → SF as (bs,E A) → SigVec as → TPred

Switched e sf s = FstOcc e (snd (sf s))

These can be understood as follows:

• NoOccs s t expresses that no events have occurred within Event signal s up to time t .

• FstOcc (te, a) s t expresses that at least one event has occurred within Event signal s up

to time t , and that the first such event occurred at time te with value a.

• NotSwitched sf s t expresses that signal function sf , having been applied to signal vector

s , has not produced any event occurrences up to time t in its Event signal output.

CHAPTER 8. CHANGE AND OPTIMISATION 95

• Switched (te, a) sf s t expresses that the signal function sf , having been applied to signal

vector s , has produced at least one event occurrence up to time t in its Event signal

output, and that the first such event occurred at time te with value a.

Note that FstOcc and Switched are parametrised over the time and value of the first event

occurrence in order to simplify expressing the forthcoming properties of switch.

Considering first the case where the switch has not yet occurred, the properties of switch

are as follows:

NotSwitched sf s ∧ Changeless sf s ⇒ Changeless (switch sf f) s

NotSwitched sf s ∧ Changelessr sf s ⇒ Changelessr (switch sf f) s

NotSwitched sf s ∧ ChangeDep sf s ⇒ ChangeDep (switch sf f) s

NotSwitched sf s ∧ ChangeDepr sf s ⇒ ChangeDepr (switch sf f) s

NotSwitched sf s ∧ ChangePrp sf s ⇒ ChangeDep (switch sf f) s

NotSwitched sf s ∧ ChangePrpr sf s ⇒ ChangeDepr (switch sf f) s

In general, the change properties of the residual signal function are not known until the switch

occurs; thus implications that rely on knowing the properties of the residual signal function

have been omitted. Also, note that the change-propagating properties are not fully preserved,

but weakened to change-dependent. This is because the change-propagating properties can be

lost when a switch occurs, but a switch cannot occur until there is a change in the input.

Finally, if the switch has occurred, then the properties of the switching combinator will be

those of the residual signal function. Intuitively this is fairly simple, but expressing it formally

is slightly awkward as the signals have to be translated into the local time frame of the residual

signal function:

Switched (te, a) sf s ∧ (λ t → Changeless (f a) (advance te s) (t − te)) ⇒ Changeless (switch sf f) s

Switched (te, a) sf s ∧ (λ t → ChangeDep (f a) (advance te s) (t − te)) ⇒ ChangeDep (switch sf f) s

Switched (te, a) sf s ∧ (λ t → ChangePrp (f a) (advance te s) (t − te)) ⇒ ChangePrp (switch sf f) s

Switched (te, a) sf s ∧ (λ t → Source (f a) (advance te s) (t − te)) ⇒ Source (switch sf f) s

Switched (te, a) sf s ∧ (λ t → Changelessr (f a) (advance te s) (t − te)) ⇒ Changelessr (switch sf f) s

Switched (te, a) sf s ∧ (λ t → ChangeDepr (f a) (advance te s) (t − te)) ⇒ ChangeDepr (switch sf f) s

Switched (te, a) sf s ∧ (λ t → ChangePrpr (f a) (advance te s) (t − te)) ⇒ ChangePrpr (switch sf f) s

Switched (te, a) sf s ∧ (λ t → Sourcer (f a) (advance te s) (t − te)) ⇒ Sourcer (switch sf f) s

8.4 Implementing Signal Function Properties

As discussed in Section 3.5.4, one of the advantages of a first-class signal-function abstraction

is that additional information can be associated with it. Thus signal functions can record

internally which properties they satisfy. Provided the implementer identifies the properties of

all the primitives, the properties of any composite signal function can be computed from those

of its components, using the implications in Section 8.3.5.

In most cases these properties would be kept internal to the implementation, and used only

for optimisation purposes. That said, there are cases when it can be advantageous to make

some properties visible. For example, as discussed in Chapter 7, the decoupled property can

be encoded in the type system, thereby allowing the type-checker to ensure the absence of

instantaneous feedback within the network. In the context of FRP, the main advantage of

CHAPTER 8. CHANGE AND OPTIMISATION 96

encoding properties in the type system is that properties of residual signal functions can be

inferred before the values of those signal functions are computed.

8.5 Suggested Optimisations

This section overviews the change-based optimisations that are possible on a signal function

network. How precisely to implement such optimisations is not discussed, as that depends on

the details of the specific FRP implementation involved. Some optimisations may be more

applicable for some implementations than others.

8.5.1 Structural Optimisation

As discussed in Section 8.1.2, structural optimisation involves eliminating unnecessary signal

functions and combinators from the network. There are two issues to consider: when structural

optimisations could be applied, and what structural optimisations are possible. I reiterate that

the scope of this chapter is only change-based structural optimisations that follow from the

properties in Section 8.3; there are, of course, many other structural-optimisation techniques

that can be applied to signal function networks (such as lowering [14, 23] or causal-commutative-

arrow normalisation [75, 77]).

When to Optimise?

Structural optimisations can be applied either statically (at compile time), or dynamically (at

run-time). Static optimisations are appealing because they incur no run-time cost. However,

because of FRP’s dynamic nature, many optimisations can only be applied at run-time. Fur-

thermore, dynamic optimisations have a lot more potential for simplifying the network. For

signal functions to be eliminated statically, the programmer must have included unnecessary

code in her program. But, as previously mentioned, it is common for signals to cease to be used,

or to become constant, as a result of structural switches during execution. Thus, even programs

that contain no unnecessary code will produce “dead” signal functions during execution. Such

signal functions can be eliminated dynamically, often significantly reducing the network size.

For dynamic optimisations, there is still a choice as to when, precisely, to apply them. One

could imagine either applying them at a small number of specific time points, or continually

attempting to optimise during execution.

For example, the most recent version of Yampa [90] takes the latter approach by attempting

structural optimisation at every time step. However, it does not try to fully optimise at each

step. Essentially, if an opportunity for an optimisation is detected then it is applied, but

further optimisation opportunities that this may have created are not checked for. Instead,

they will be detected, and applied, at the next time step. This leads to a situation where

one step of optimisation is applied at each time step, until no further optimisation is possible.

However, even when the network has been fully optimised, optimisation opportunities are still

being checked for. Thus, whenever a structural switch occurs, if any further optimisations

become possible, they begin to be applied. The advantage of this approach is that the cost

of optimisation is spread out over several time steps, rather than producing a time-lag at

CHAPTER 8. CHANGE AND OPTIMISATION 97

a particular point in time. The disadvantage is that computation is wasted by continually

checking for optimisations even after the network has been fully optimised.

The alternative approach is to optimise only at certain time points: when the network

is first initialised and at each structural switch thereafter. Between these points in time the

network remains static, and thus new optimisation opportunities will not arise1. Note that

when structural optimisations are applied dynamically, the network is restructured for all future

points in time, excluding the present. Or, to put it more operationally, optimisation is performed

after execution of the initialisation step. In the case of newly switched-in signal functions, one

could imagine optimising their structure including the present time. However, there are more

optimisation opportunities if just the future is optimised. In essence, the reflexive variants of

the change properties determine which optimisations are valid including the current time, and

the non-reflexive variants determine which optimisations are valid excluding the current time.

More primitives have the non-reflexive properties, and thus more optimisations are valid if the

current time is excluded.

If a network is only optimised when a structural switch occurs, then there is a further choice

as to what parts of the network to optimise at those points. Should the entire network be

optimised, or just the newly switched-in signal function? If the network is large, the former

option could be computationally expensive. However, not doing so will miss some optimisation

opportunities. Note that this question does not arise if optimisations are applied continually, as

the entire network is continually being optimised. One solution to this dilemma is to optimise

the network in the locality of the switch, iterating outwards until no more optimisations are

possible. An algorithm for this can be summarised as follows:

1. Optimise the residual signal function.

2. Compare the change properties of the residual signal function with those of the switching

combinator it has replaced. If it has the same or weaker properties, then stop. Otherwise,

optimise the sub-network containing the residual signal function.

3. Compare the change properties of this sub-network with those it had prior to optimisation.

If it has the same or weaker properties, then stop. Otherwise, optimise the sub-network

containing this sub-network, and repeat.

Constant Propagation

If a Step or Continuous signal is changeless at a point in time, then it is constant thereafter.

Repeatedly recomputing a constant value is a waste of computational resources and should be

avoided. Similarly, a changeless Event signal contains no future event occurrences. A changeless

signal function produces changeless signals, and thus can be eliminated from the network (and

garbage collected). Constant propagation can then be applied, propagating the value of the

output sample at the current point in time (in the case of Step or Continuous signals), or the

absence of event occurrences (in the case of Event signals), throughout the network. This is a

dynamic optimisation.

1At least, not for the optimisations considered here. One could imagine more fine-grained optimisations
specialised to individual primitives.

CHAPTER 8. CHANGE AND OPTIMISATION 98

There is a similar static optimisation for reflexively changeless signal functions. If a signal

function is reflexively changeless at time0, then there cannot be an occurrence in any output

Event signals at time0 (to be reflexively changeless at time0, the outputs cannot be Step or

Continuous signals). Thus the signal function can be eliminated, and the empty Event signals

propagated.

In both cases, the constant propagation can lead to other signal functions becoming sources

if all of their (used) inputs are set as constant. This can then present further optimisation

opportunities. In the dynamic case they gain the source property, in the static case they gain

the reflexive source property.

A limited form of dynamic constant propagation is employed by the most recent version of

Yampa [90].

Eliminating Unused Signal Functions

Any signal function whose output is not used can be eliminated. This could arise either because

the signals are eliminated by routing primitives (and thus never reach another signal function),

or because all signal functions that do receive it are sources. This is essentially reactive-level

garbage collection, exploiting the properties of routing combinators and signal functions to

identify unused signal functions.

This can be applied as a static optimisation, in which case signal functions can be determined

not to use their input if they are reflexive sources at time0. It can also be applied as a dynamic

optimisation, in which case signal functions are determined not to use their input if they are

sources at the time of optimisation.

The most recent version of Yampa uses this technique to some degree [90], but is limited by

the UFRP model. As discussed in Section 3.5.2, much of the routing of the arrow framework

is carried out by lifted pure functions, hiding the routing from the reactive level.

Switch Elimination

A switch combinator, and its subordinate signal function, can be eliminated after the structural

switch occurs, leaving just the residual signal function in its place. This dynamic optimisation

is so natural and simple that it is often easier to implement the switch combinator with this

optimisation than without (as it avoids the need to remember if the structural switch has

occurred). The Haskell embedding of N-ary FRP does this (see Appendix C.2).

More interestingly, switching combinators for which a structural switch will never occur can

also be eliminated. Statically, if the Event signal produced by the subordinate signal function

of switch is reflexively changeless at time0, then the subordinate signal function will never

be switched-out. Dynamically, if the Event signal is changeless, and the switch has not yet

occurred, then the subordinate signal function will never be switched-out. Consequently, in

these situations, the switch combinator can be eliminated and replaced with the subordinate

signal function (and routing primitives to discard the Event signal) as follows:

(switch sf f) (sf ≫ sfFst)

Eliminating switching combinators can be of considerable benefit, as they often obstruct

other optimisation techniques (such as causal-commutative-arrow normalisation [75]).

CHAPTER 8. CHANGE AND OPTIMISATION 99

Loop Elimination

Looping combinators that do not use the fed-back signal can be eliminated. This can be done

statically if the feedback signal function is a reflexive source at time0, or dynamically if it is a

source at the time of optimisation. The combinator can be restructured as follows:

(loop sff sfb) (forkSecond sfb ≫ sff)

Note that this is type incorrect, as the type of the input to sfb should be that of the output of

sff . However, as a source ignores its input, its input type can be coerced to any signal vector

(and any implementation of sources should reflect this).

Example of Structural Optimisation

As an example of structural optimisation, consider the following program:

oneInelasticReset : Ball → SF (E Ball) (C Ball)

oneInelasticReset b = once ≫ sfFork ≫ resetBall inelasticBall b

This models a falling inelastic ball that may be moved to a new position at-most once in

response to an external event2. Not counting routing primitives, this program contains ten

primitive signal functions and three switching combinators. One of the switching combinators

is used recursively. The two main opportunities for dynamic optimisation are when the reset

event occurs, and when the ball impacts the ground thereafter. After these two occurrences,

the program reduces to a constant signal defined by two primitive signal functions:

once ≫ sfFork ≫ resetBall inelasticBall b

 {switch elimination (after the reset event occurs)}

nowTag b′ ≫ sfFork ≫ resetBall inelasticBall b

 {constant propagation and switch elimination}

inelasticBall b′

 {switch elimination (after the ball impacts the ground)}

constantS (0, 0) ≫ fromS

8.5.2 Change Propagation

The motivation for change propagation is that many signal functions are such that their output

remains unchanging while their input is unchanging. The idea is to identify where this is the

case, and then not recompute the unchanging output. This approach is inherent to push-based

implementations of FRP (such as Event-Driven FRP [129], FrTime [23] and Grapefruit [63]),

wherein a signal is only recomputed when there is a change in a signal upon which it depends.

It is also present in push-pull implementations (such as Reactive [37]) that make use of push-

based execution for discrete-time signals, and pull-based implementation for continuous-time

signals. However, change propagation is still possible to some degree for the continuous-time

signals of such systems, and is also useful for entirely pull-based systems (such as Yampa [90]).

A common way to implement signal functions is as state transition functions in a data-

flow network (this approach is taken by Yampa and the implementations in this thesis). Such

transition functions execute over a discrete sequence of time steps, mapping an input sample

and state to an output sample and state at each step. Each signal function maintains an

2The example is contrived, but not unreasonably so. A video game containing an entity that “respawns” a
finite number of times would give rise to a similar situation.

CHAPTER 8. CHANGE AND OPTIMISATION 100

internal state, rather than sharing a global state. In this pull-based style of implementation,

change propagation can be applied during execution to avoid re-computation of samples, thereby

regaining some of the efficiency of a push-based implementation.

Change propagation is hindered if information about which signals are unchanging is lost.

This is a problem in Yampa where, because there is no difference between a tuple of signals and

a signal of tuples (see Section 3.5.2), a change to one signal in a tuple appears to be a change

to all signals in the tuple.

FrTime, on the other hand, has very effective change propagation. As well as being push-

driven, it also performs run-time equality checks to compare a recomputed value with the

previous value, to determine if it really has changed [24].

Change-Executable Signal Functions

A problem with applying change propagation to N-ary FRP is that the output from some

signal functions can change even if its input does not (e.g. integration). Furthermore, even for

change-dependent signal functions (which do not have that problem), there can be a change

in the internal state even if the input (and thus also output) does not change. For example,

consider the following change-dependent signal function:

sampleTime : SF (E A) (E Time)

sampleTime = forkFirst localTime ≫ sampleC

Executing this signal function (in, say, the sampled implementation from Chapter 5) only when

there is an input event occurrence would cause the output of localTime to “lose time”3.

To account for this, the following stronger signal function property is required. A signal

function is said to be change-executable if “cutting out” an unchanging interval from its input

signal vector is equivalent to “cutting out” the same interval from its output signal vector:

ChangeExecr : SF as bs → SigVec as → TPred

ChangeExecr sf s t = ∀ s′ → H (EqRep s s′) t → ∀ t ′ → t ′ > t → UnchangingOverr s′ t t ′

→ UnchangingOverr (sf s′) t t ′ × Gr (EqRep (sf (cut t t ′ s′)) (cut t t ′ (sf s′))) t

where

cut : Time → Time → SigVec xs → SigVec xs

cut t1 t2 sv = splice sv (advance t2 sv) t1

The splice and advance utility functions are defined in Appendix B.5. Intuitively, cut t1 t2 sv

“cuts-out” a segment corresponding to the interval [t1, t2) from the signal vector sv .

One would expect to be able to define a non-reflexive variant of change executable as well;

but, for unfortunate technical reasons that will be discussed in Section 9.1, such a property

is not expressible in the N-ary FRP model. However, change executable is sufficient to say

that, in a sampled implementation faithful to the conceptual model, it is valid to not execute

a change-executable signal function at any time step for which its input is unchanging. The

output sample at such points is the absence of an event occurrence for Event signals, and the

previous output sample for Step and Continuous signals.

Formally verifying which signal functions are change-executable remains the subject of future

work, as the use of cut makes reasoning about the property significantly more complex than

the other change properties. That said, it is straightforward to prove that change executable is

strictly stronger than reflexively change-dependent :

3Except in the unlikely case of an event occurring at every time step.

CHAPTER 8. CHANGE AND OPTIMISATION 101

ChangeExecr sf s ⇒ ChangeDepr sf s

Consequently, being change-dependent is a necessary requirement for a signal function to be

change-executable.

The atomic routers and the signal functions produced by the lifting primitives are change-

executable. Also, initial investigation suggests that the following primitive signal functions are

change-executable:

never ,notYet ,filterE , edge, fromS

Finally, it is conjectured that the combinators preserve the change-executable property as fol-

lows:

ChangeExecr sf 1 s ∧ ChangeExecr sf 2 (sf 1 s) ⇒ ChangeExecr (sf 1 ≫ sf 2) s

ChangeExecr sf 1 s ∧ ChangeExecr sf 2 s ⇒ ChangeExecr (sf 1 &&& sf 2) s

ChangeExecr sf s ⇒ ChangeExecr (freeze sf) s

NotSwitched sf s ∧ ChangeExecr sf s ⇒ ChangeExecr (switch sf f) s

Switched (te, a) sf s ∧ (λ t → ChangeExecr (f a) (advance te s) (t − te)) ⇒ ChangeExecr (switch sf f) s

8.5.3 Interaction between Optimisations and Switching

In Section 8.3.1, Step and Continuous signals were defined to be changing at time0. This

may seem counter-intuitive; for example, one could argue that a constant signal never changes.

However, this definition was chosen with optimisation in mind.

The reason pertains to the dynamic nature of signal function networks. Each signal function

runs in its own local time frame (see Section 3.4.4). Consequently, what is time0 to one signal

function may not be to another. In particular, after a structural switch, the residual signal

function will be at its local time0, whereas the network external to the switching combinator

will not (unless the structural switch occurred at the external time0). Consider the case when

the output is a constant Step signal. The initial value of that signal appears as a change to

the rest of the network, as this is a new value that has not been seen before. If this value was

considered to be unchanging, then the network could be incorrectly optimised based on the

assumption that the value of the signal is the same as it was previously.

8.5.4 Testing Optimisations

While many of the optimisations discussed in this section appear in one form or another in

many existing FRP variants, they have yet to be tested in a systematic manner on a realistic

implementation of N-ary FRP. This is the obvious next step of this work. In particular, the

effectiveness of dynamic optimisations is hard to judge without experimentation, as the over-

head of applying such optimisations does not always outweigh the benefits (as experience has

shown with Yampa [90]). Furthermore, the effectiveness of optimisations can be very appli-

cation specific. For example, event-heavy applications tend to gain more from change-based

optimisations than applications with lots of continuous-time signals and integration [90].

It seems likely that the biggest gains from these optimisations would come from the elimina-

tion of dynamic combinators, as they would then complement other techniques such as causal-

commutative-arrow normalisation which are obstructed by such combinators [75]. However,

investigating this remains for future work.

CHAPTER 8. CHANGE AND OPTIMISATION 102

8.6 Conclusions

This chapter identified and formally defined several temporal properties of signals and signal

functions pertaining to change and change propagation. These properties hold in the N-ary

FRP model, and they would be expected to hold in any implementation that would be consid-

ered “faithful” to the semantics. Optimisation techniques for FRP implementations were also

discussed, along with which properties have to hold for those optimisations to be valid.

Many of the properties defined were very similar to each other, with the differences being

small and not always intuitive. A formal vocabulary to describe these notions precisely is thus

a worthwhile tool in its own right.

Reasoning about change in the setting of FRP is challenging due to structural dynamism

and changes due just to time passing. It is very easy to introduce invalid optimisations by

failing to appreciate subtle aspects of the semantics. Having a formal framework that allows

optimisation opportunities to be identified and properly justified is thus a useful aid for FRP

implementers.

Chapter 9

Extensions to N-ary FRP

This chapter considers several extensions to the N-ary FRP conceptual model and type system.

Specifically:

• Allowing events and changes to occur immediately after a time point (rather than at a

time point);

• Refining the N-ary FRP type system to allow for safe uninitialised signals (signals that

are undefined at time0);

• Refining the type system of N-ary FRP with Feedback to more precisely track instanta-

neous dependencies between signals.

9.1 Occurrences Immediately After a Point

The N-ary FRP conceptual model (Section 4.1) only allows events to occur at points in time,

not immediately after points in time. This is not the only option. The main alternatives are

allowing events (and hence structural switches) to occur both at and immediately after time

points, or to only allow them immediately after time points. FRP variants have made different

decisions in this regard; see Daniels [32, Chapter 5] for a discussion of this.

Step signals are similar to Event signals in the N-ary FRP model in this regard, as they

only assume new values at time points. That is, the value of a Step signal at the moment of

change is that of the signal henceforth, not that of the signal hitherto. The alternatives are

defining the value at the moment of change to be that of the signal hitherto, or allowing two

types of change to cater for both situations.

Note that Continuous signals are less constrained, and can assume new values both at and

immediately after time points.

In many cases, it is natural for an event to occur immediately after a time point. Consider

an event condition such as t > 5 ; this should cause an event immediately after time 5, but

at time 5 the event should not yet have occurred. This is not supported by the N-ary FRP

model, and consequently the conceptual definition of the when signal function prohibits such

event conditions (see Appendix B.7).

103

CHAPTER 9. EXTENSIONS TO N-ARY FRP 104

This is a limitation of the N-ary FRP model, and a natural solution would be to extend the

model to accommodate events and changes immediately after a time point. However, extending

the model in such a way has proved challenging, and is the subject of ongoing work. This section

further motivates such an extension by describing some additional FRP primitives that it would

accommodate, and then overviewing the issues that arise when attempting to define such an

extension.

9.1.1 Additional Primitives

There are two noteworthy families of FRP primitives that the N-ary FPR model is unable to

accommodate: infinitesimal delays and decoupled switching combinators. These are commonly

used primitives that appear in many FRP languages, yet cannot be expressed within the N-ary

FRP model.

Infinitesimal Delays

Recall the primitives fromS and dfromS (Section 4.2.4), which both coerce a Step signal to a

Continuous signal. They differ only in the value they assign to the resultant Continuous signal

at the moments of change in the Step signal: fromS defines it to be that of the signal henceforth,

dfromS defines it to be that of the signal hitherto.

The meaning of a Step signal is that its value at the moments of change is that of the signal

henceforth. Thus fromS can be considered to preserve the meaning of a signal, whereas dfromS

can be considered to change the meaning of a signal by delaying it by an infinitesimal amount

of time. Consequently, dfromS is really two distinct operations: coercion and an infinitesimal

delay. Yet, in the N-ary FRP model, it is necessary to combine the two operations into a single

primitive. This is because the model does not allow an infinitesimal delay to be applied (in

isolation) to either a Step signal or a Continuous signal. In the former case, this is because

a Step signal only allows changes at time points. An infinitesimal delay applied to such a

signal would produce a Step signal that changes immediately after time points, which cannot

be represented. In the latter case, although a Continuous signal that only changes in value

immediately after time points can be defined (such as the signal produced by dfromS), there is

no way to apply an infinitesimal delay to an arbitrary Continuous signal.

If the N-ary FRP model were extended to allow Step signals with changes immediately after

a time point, then a primitive that solely delays a Step signal by an infinitesimal amount would

be definable1:

iPreS : A → SF (S A) (S A) dec

Like dfromS and delayS , this primitive takes an initial value as an argument to define the

output at time0 (hence the ‘i’ prefix).

A similar primitive that delays an Event signal by an infinitesimal amount could also be

provided:

preE : SF (E A) (E A) dec

In this case no initial value is required, as there will just not be an event occurrence at time0.

1Signal functions that introduce an infinitesimal delay are often called pre for “previous”.

CHAPTER 9. EXTENSIONS TO N-ARY FRP 105

These primitives are frequently used in FRP languages as the decoupled signal function

within a feedback loop. For example, the saveResume combinator (Section 7.4.1) uses dhold

(Section 4.3.2), which is defined using dfromS , to decouple the feedback loop. However, note

that it would be more natural to define dhold using iPreS rather than dfromS . The coercion

to a Continuous signal is only necessary because there is no other way to apply an infinitesimal

delay to a signal in the N-ary FRP model.

Decoupled Switching Combinators

Recall the dswitch combinator from Section 3.4.4. It is the same as switch, except that the

output at the moment of switching is that of the subordinate signal function rather than

that of the residual signal function. This is an example of a decoupled switching combinator

(decoupled switch), which are so called because their output signals are temporally decoupled

from the Event signal that controls the switch2. That is, when an event occurs in this signal,

the effects of this will not be observable in the output signals until immediately afterwards (even

though the switch occurs, and the residual signal function starts, immediately). The dswitch

combinator cannot be expressed in the N-ary FRP model, because it requires the capability

to express Step signals that change immediately after a time point (though a more restricted

version specialised to Continuous or Event signals is definable). Specifically, the problem is

that a decoupled variant of the splice function (see Appendix B.5.2), which would define the

value of the resultant signal at the splice time to be that of the first signal, cannot be defined.

(This is the reason that a non-reflexive variant of the change-executable property could not be

expressed in Section 8.5.2, as that required such a splice variant.)

Decoupled switches are particularly useful because the temporal decoupling of the output

from the Event signal can be exploited when defining feedback [27]. This can be seen in the

type of the replace combinator (and its decoupled variant, dreplace):

replace : SF as bs d1 → (A → SF as bs d2) → SF (as,E A) bs cau

dreplace : SF as bs d1 → (A → SF as bs d2) → SF (as,E A) bs (d1 ∧ d2)

The replace combinator is never decoupled, whereas the dreplace combinator is decoupled if

its component signal functions are both decoupled. However, the type system is not precise

enough to distinguish between switch and dswitch:

switch : SF as (bs,E A) d1 → (A → SF as bs d2) → SF as bs (d1 ∧ d2)

dswitch : SF as (bs,E A) d1 → (A → SF as bs d2) → SF as bs (d1 ∧ d2)

This will be addressed in Section 9.3.3.

9.1.2 Unresolved Issues

Attempting to extend the N-ary FRP model such that it can accommodate event occurrences

and changes immediately after a time point has given rise to several unresolved issues. Many of

these stem from one question: in any given signal, can there be an occurrence at a time point

2The term decoupled is (unfortunately) overloaded onto several related concepts. The three main uses are: a
signal is temporally decoupled from another signal if it does not instantaneously depend on it; a signal function
is decoupled if all of its output signals are temporally decoupled from all of its input signals; a decoupled switch

is a switching combinator such that the output signal vector is temporally decoupled from the Event signal
that controls the switch. Thus a decoupled switch is not the same as a switching combinator that constructs a
decoupled signal function.

CHAPTER 9. EXTENSIONS TO N-ARY FRP 106

and then again immediately after that time point, or can there only be an occurrence at one

of the two? (Note that when the same argument is relevant for both Step and Event signals,

the term occurrence is used to subsume event occurrences and changes in Step signals.) This

section considers this question, and the problems that arise from both possible answers.

No Consecutive Occurrences

First consider a model that allows occurrences immediately after a time point, but not both at

and immediately after the same point. One way to formulate such a model would be as follows:

data When (A : Set) : Set where

now : A → When A

soon : A → When A

ChangePrefix : Set → Set

ChangePrefix A = Time → ChangeList (When A)

SigVec : SVDesc → Set

SigVec (C A) = Time → A

SigVec (E A) = Maybe (When A) × ChangePrefix A

SigVec (S A) = A × ChangePrefix A

SigVec (as, bs) = SigVec as × SigVec bs

That is, each occurrence happens either now (at the time point) or soon (immediately after the

time point), but there must be a time delta between each occurrence. This will be referred to

as the Now-Soon model.

Now, consider a signal function such as merge or mapS2 that merges together two Event or

Step signals. At any time t , it is possible there may be a now occurrence in one input signal,

and a soon occurrence in the other. However, the output signal cannot contain both a now and

soon occurrence at time t . There are thus three options: merge the occurrences, eliminate one

of the occurrences, or delay one of the occurrences. Intuitively, merging the occurrences seems

the correct thing to do. However, this is not possible without violating causality.

Why is this? Well, for a signal function to be causal its output at time t must not depend

on input immediately after time t . Thus, if there is a now occurrence at time t , then the signal

function must determine whether to output a now occurrence at time t , and what value to give

that occurrence, before knowing if there is a soon occurrence at time t . Consequently, merging

the two occurrences would be acausal. Likewise, discarding or delaying the now occurrence

based on the existence of the soon occurrence would also be acausal.

The remaining options are to discard or delay the soon occurrence. If it is discarded, then

information is lost. For an Event signal, event occurrences are being lost along with the values

they carry. For a Step signal, the output signal is not being updated for a period of time

(specifically, until the next input change). On the other hand, if the soon occurrence is delayed,

then by what time delta should it be delayed? Whatever value is chosen would be arbitrary,

and would introduce inaccuracy into the model. Furthermore, if the time delta chosen is larger

than the (as yet unknown) time delta before the next occurrence, then the resultant output

signal could be significantly corrupted.

Arguably, this could be partially addressed for Event signals by providing only a more

limited version of the merge signal function that only emits unit events:

mergeUnit : SF (E A,E B) (E Unit)

CHAPTER 9. EXTENSIONS TO N-ARY FRP 107

In this case, a now event and a soon event could be merged into a single now event, with no

violation of causality. No additional information is lost when this happens, albeit only because

the values are always discarded. However, this approach would be of no use for Step signals,

as a unit Step signal is completely devoid of information content.

Furthermore, the merge signal function is not the only primitive that can cause now and

soon occurrences at the same time point. When switching, the subordinate and residual signals

are spliced together temporally. The subordinate signal could contain an occurrence now, and

the residual signal could contain an occurrence soon. When splicing the two signals together,

there would again be the problem of how to merge the two occurrences. Taking the mergeUnit

approach would require there to be only unit Event signals in the entire system!

Soon Soon is Soon Now

From the preceding discussion, it seems that occurrences must be allowed both now and soon

at the same time point. The Now-Soon model is thus modified as follows:

data When (A : Set) : Set where

now : A → When A

soon : A → When A

nowSoon : A → A → When A

SigVec (E A) = Maybe (When A) × ChangePrefix A

SigVec (S A) = A × Maybe A × ChangePrefix A

The difficulty of merging signals is now resolved, as merging a now occurrence and a soon

occurrence simply results in a nowSoon occurrence.

The next question is whether there can be occurrences immediately after a soon occurrence,

or whether that would just be the same as a soon occurrence. As a concrete example, consider

the ipreS and preE signal functions. These signal functions map now occurrences to soon

occurrences, but what should they do with soon occurrences? One could argue that immediately

after immediately after t is the same as immediately after t , and thus that soon occurrences

should be mapped to soon occurrences. Alternatively, one could argue that they are distinct,

in much the same way that now and soon are distinct. Another way of putting the question is

are two infinitesimal delays equal to one infinitesimal delay? The remainder of this subsection

considers treating them as equal, and the next subsection considers treating them as distinct.

Assuming that ipreS and preE map soon occurrences to soon occurrences, what should

they do with nowSoon occurrences? For Step signals, one could argue that the now occurrence

should be discarded, leaving just a soon occurrence, as all that is of interest is its value at

the time point and its value henceforth, not its value over some empty interval between the

two. However, Events signals are trickier as event occurrences should not be lost. One solution

would be to provide a merging function as a parameter to preE , for example:

ePreMerge : (A → A → A) → SF (E A) (E A)

However, this seems dubious and is certainly counter-intuitive. Inserting an infinitesimal delay

in an Event signal should not cause some event occurrences therein to merge together.

Matters get worse when structural dynamism is considered. Consider a soon event triggering

a structural switch, with the residual signal function producing both a now and soon occurrence

at its local time0. How should those occurrences correspond to the triggering event? Intuitively,

CHAPTER 9. EXTENSIONS TO N-ARY FRP 108

the residual now occurrence would seem to correspond to the external soon event. This would

mean that the local soon occurrence would be immediately after the external soon event, which

is considered the same time point as the external soon. This presents two major problems.

First, the residual soon occurrence occurs after the residual now occurrence in the local time

frame, but they appear to occur at the same time point in the external time frame. This is

not modular. Second, there then needs to be a way of merging the two occurrences, which, as

previously discussed, is not possible without losing information.

An alternative would be to decide that a residual signal function always starts at a time

point. That is, even if the triggering event occurs soon, the residual signal function starts now.

In order to maintain causality, the initial now outputs of the residual signal function would be

discarded. The local soon would then correspond to the external soon. However, this is not

modular either. Delaying the triggering event by an infinitesimal amount of time should only

have the effect of delaying the structural switch (and the output of the residual signal function)

by an infinitesimal amount of time; it should not eliminate some of the residual signal function’s

output.

Ordered Consecutive Occurrences

Now consider immediately after soon to be distinct from soon. Once this is done, it quickly

becomes apparent that it is necessary to allow for an arbitrary number of consecutive ordered

occurrences immediately after a time point. Intuitively, this is because any occurrence can be

infinitesimally delayed until immediately afterwards.

This is similar to a super-dense model of time: a model that allows a finite number of

occurrences at any given time point, but assigns a chronological ordering between all occurrences

that share the same point [18, 81, 84, 132]. Such a model typically defines occurrences by

tagging them with two temporal co-ordinates: a point in time, and a natural number ordering

the occurrences at that time point.

The proposed extension to the Now-Soon model differs from such a super-dense model in

that a super-dense model considers all occurrences to be at a time point, whereas the Now-Soon

model would consider at most one occurrence to be at the time point, and the remainder to be

immediately after the time point. The important property that a signal only contains a finite

number of occurrences in a finite amount of time still holds, because of the restriction that

there can only be a finite number of occurrences at any given time point. The natural number

that orders the occurrences would also, in the Now-Soon model, count the infinitesimal delays

between occurrences. This extended Now-Soon model could be expressed as follows (where N
+

denotes strictly positive natural numbers):

ChangePrefix : Set → Set

ChangePrefix A = Time → ChangeList (((∆t × N) ⊎ N
+) × A)

SigVec : SVDesc → Set

SigVec (C A) = Time → A

SigVec (E A) = Maybe A × ChangePrefix A

SigVec (S A) = A × ChangePrefix A

SigVec (as, bs) = SigVec as × SigVec bs

That is, there is a gap between each occurrence of either a time delta and a natural number of

infinitesimal delays, or a strictly positive natural number of infinitesimal delays.

CHAPTER 9. EXTENSIONS TO N-ARY FRP 109

There is no longer any need to merge occurrences when applying infinitesimal delays: the

number of infinitesimal delays is just incremented. When merging two signals, occurrences at

the same time point are merged only if the numbers of infinitesimal delays are equal; otherwise

they remain two separate occurrences.

This approach seems promising, but the ramifications of this model on the N-ary FRP

primitives need to be considered. This remains as future work.

Interaction with Continuous Signals

However, there is a further problem concerning the interaction between soon occurrences (or

super-dense occurrences) and continuous signals. For example, the sampleWithC signal function

merges an Event and Continuous signal by sampling the Continuous signal at the time points of

the event occurrences, and combining that value with the value of the event. For a soon event,

what value from the Continuous signal should be combined with it? A continuous signal is a

function from time to value, it cannot take “immediately after” a time point as an argument.

The value of the Continuous signal at the time point could be used, but that would be incorrect

for a Continuous signal that changes immediately after a point (consider an event occurring

immediately after time x for the Boolean Continuous signal (λ t → t > x)).

9.1.3 Summary and Related Work

The N-ary model is limited by events that can only occur at, not immediately after, points in

time. Similarly, it has Step signals that change at, not immediately after, time points. This

means that the N-ary FRP model cannot describe common FRP primitives such as infinitesimal

delays and decoupled switching combinators. It would seem natural to extend the N-ary FRP

model to accommodate such functionality, but it is unclear how this should be done. As

discussed, a super-dense model of time seems the most promising approach, but investigating

this is future work.

The problem is addressed in a variety of ways in other FRP models. In discrete-time

models (or discrete-time implementations of continuous-time models) the problem does not

arise, as immediately after a time point is just the next time sample. Other continuous-time

models of FRP have either disallowed infinitesimal delays [65, 127], or postulated the existence

of an infinitesimal time delta for use in expressing the semantics [25]. Decoupled switching

combinators are found in most FRP variants; indeed, in some FRP variants all switches are

decoupled switches. However, most FRP variants do not model Step signals as a distinct signal

kind, which is a sufficient restriction to allow decoupled switches to be defined (as discussed in

Section 9.1.1). A notable exception is Reactive, which deals with the problem by only allowing

Step signals to change immediately after a time point [37] (although it is then impossible to

define non-decoupled switches).

9.2 Type-safe Initialisation

In many FRP and synchronous data-flow languages (e.g. Yampa [92], Signal [68] , Lustre

[48] and Lucid Synchrone [104]), it is possible to define signals that are undefined at time0.

CHAPTER 9. EXTENSIONS TO N-ARY FRP 110

These are called uninitialised signals because they lack an initial value. Without such signals,

a programmer would have to provide a “dummy” initial value for signals in situations where

the initial value is not used. This makes the language more expressive (as situations where no

such value is available would otherwise be inexpressible), and also makes FRP programs clearer

as dummy values can obfuscate code [21].

The disadvantage of uninitialised signals is that they can cause run-time errors in an im-

plementation if their (undefined) initial value is used. Some languages leave the correct use of

uninitialised signals as a responsibility of the programmer (e.g. Yampa), while others perform

static checks (e.g. Lucid Synchrone). Such checks tend to be conservative in nature, often

requiring a signal to be initialised several times [21]. Some languages simply do not allow

uninitialised signals at all, as is the case with N-ary FRP.

This section defines N-ary FRP with Uninitialised Signals, an extension of N-ary FRP

that does allow uninitialised signals. This is achieved through a type-system refinement that

ensures undefined initial values are never used in a well-typed program. The type system is

similar in style to that of Colaço and Pouzet [21]; the differences are discussed in Section 9.2.5.

Introducing uninitialised signals is orthogonal to introducing feedback, and so N-ary FRP,

rather than N-ary FRP with Feedback, is taken as the base language for simplicity. However,

as shown in Sculthorpe and Nilsson [111], combining feedback and uninitialised signals is both

natural and straightforward.

9.2.1 Infinitesimal Delays

Many FRP and synchronous data-flow languages provide a primitive that delays a signal by

some minimal amount:

pre : Signal A → Signal A

In a sampled implementation, this minimal amount is one time step. For languages with a

discrete-time conceptual model, this is a very basic operation. For languages with a continuous-

time model, this is generally expressed as an infinitesimal delay in the signal (as discussed in

Section 9.1.1). There are two important properties about such a primitive: it is decoupled, and

it produces an uninitialised signal.

Languages providing pre also provide a corresponding primitive to initialise such unini-

tialised signals:

initialise : A → Signal A → Signal A

initialise a s ≈ λ t → if s > 0 then s t else a

That is, initialise overwrites the initial value of a signal with the provided value3. Note that

in a multi-kinded FRP model there is no need to initialise event signals: an uninitiated event

signal just corresponds to an event signal with no occurrence at time0.

Languages that disallow uninitialised signals often provide a single primitive that introduces

an infinitesimal delay and initialises the resultant signal, effectively combining pre and initialise:

iPre : A → Signal A → Signal A

iPre a s ≈ initialise a (pre s)

3In many languages initialise is denoted −>.

CHAPTER 9. EXTENSIONS TO N-ARY FRP 111

This is the approach taken by N-ary FRP. The dfromS primitive corresponds to an instance of

iPre specialised to an input Step signal and an output Continuous signal. Likewise, the iPreS

primitive discussed in Section 9.1.1 is the instance specialised to Step signals.

However, there are several reasons why combining pre and initialise into a single primitive

is limiting:

• It may be inconvenient, or impossible (if no initial value is available), to initialise the

signal at the usage of pre, compared to elsewhere in the program.

• A lifted pure function can be applied to an uninitialised signal without causing an error,

it just produces an uninitialised output signal.

• Some primitives do not require their input signals to be initialised, yet still produce

initialised output.

The remainder of this section refines the type system of N-ary FRP to allow uninitialised

Continuous signals. Specifically, signal vector descriptors are modified such that Continuous

signals are tagged as being either initialised or uninitialised. A similar refinement should be valid

for Step signals; but, as discussed in Section 9.1, N-ary FRP does not yet allow Step signals that

change immediately after a point (which is required to express the signal becoming initialised

immediately after time0). Nevertheless, Continuous signals are sufficient to demonstrate the

interesting aspects of the type system.

9.2.2 Initialisation Descriptors

First, a data type of initialisation descriptors is introduced. These are tags that will be included

in signal vector descriptors to describe the initialisation properties of signals.

data Init : Set where

ini : Init -- initialised signal

uni : Init -- uninitialised signal

As only uninitialised Continuous signals are supported by this extension, signal vector

descriptors are refined as follows:

data SVDesc : Set where

C : Init → Set → SVDesc

E : Set → SVDesc

S : Set → SVDesc

, : SVDesc → SVDesc → SVDesc

Signal vectors are then refined:

SigVec : SVDesc → Set

SigVec (C ini A) = Time → A

SigVec (C uni A) = T ime+ → A

SigVec (E A) = Maybe A × ChangePrefix A

SigVec (S A) = A × ChangePrefix A

SigVec (as, bs) = SigVec as × SigVec bs

That is, they are defined as before (Section 4.1.4) except that a Continuous signal may be

uninitialised, in which case it is not defined at time0.

Finally, three utility functions over these modified descriptors are defined:

CHAPTER 9. EXTENSIONS TO N-ARY FRP 112

iniSV : SVDesc → SVDesc

iniSV (C A) = C ini A

iniSV (E A) = E A

iniSV (S A) = S A

iniSV (as, bs) = (iniSV as, iniSV bs)

uniSV : SVDesc → SVDesc

uniSV (C A) = C uni A

uniSV (E A) = E A

uniSV (S A) = S A

uniSV (as, bs) = (uniSV as, uniSV bs)

⊓ : Init → Init → Init

ini ⊓ ini = ini

⊓ = uni

The iniSV and uniSV functions set all initialisation descriptors to be initialised or uninitialised,

respectively. The ⊓ operator is conjunction of initialisation descriptors.

9.2.3 Subtyping

Initialised signals are a subtype of uninitialised signals, as they can always be substituted in

their place (by “forgetting” the initial value of the signal). In a language without subtyping,

an explicit weakening primitive could be provided to coerce initialised signals to uninitialised

signals. To express such a primitive, subtyping relations on initialisation and signal vector

descriptors are required:

〈: : Init → Init → Set

uni 〈: ini = False

〈: = True

<: : SVDesc → SVDesc → Set

C i1 A <: C i2 B = (i1 〈: i2) × (A ≡ B)

E A <: E B = A ≡ B

S A <: S B = A ≡ B

(as1, bs1) <: (as2, bs2) = (as1 <: as2) × (bs1 <: bs2)

<: = False

A primitive weakening combinator can then be given the following type:

weaken : as′ <: as → bs <: bs′ → SF as bs → SF as′ bs′

9.2.4 Refined Primitives

This section gives the refined types of the N-ary FRP primitives. Only those that require

modification are considered. Note that some of these types could be more polymorphic, which

would make programming with them more convenient in a host language without subtyping.

That is not done so here to avoid complicating the presentation.

Primitive Signal Functions

First, initialise is added as an additional primitive:

initialise : A → SF (C uni A) (C ini A)

Instead of requiring an initial value, dfromS now produces an uninitialised signal:

dfromS : SF (S A) (C uni A)

CHAPTER 9. EXTENSIONS TO N-ARY FRP 113

Whereas fromS produces an initialised signal:

fromS : SF (S A) (C ini A)

Integration always produces an initialised signal (the output at time0 is always 0), even if

the input signal is uninitialised:

integralC : SF (C i R) (C ini R)

integralS : SF (S R) (C ini R)

Delaying a Continuous signal always produces an initialised signal, as the initialisation

function provides the initial value. If the input signal is uninitialised, then the initialisation

function will also provide the output at the time point equal to the delay time.

delayC : T ime+ → (Time → A) → SF (C i A) (C ini A)

The when signal function does not require initialised input, as it never produces an event

at time0:

when : (A → Bool) → SF (C i A) (E A)

Lifting Functions

The lifting functions produce initialised signals if all of their input signals are initialised:

liftC : (A → B) → SF (C i A) (C i B)

liftC2 : (A → B → Z) → SF (C i1 A,C i2 B) (C (i1 ⊓ i2) Z)

sampleWithC : (A → B → Z) → SF (C i A,E B) (E Z)

In the case of sampleWithC , this means an initial event occurrence will be discarded if the

Continuous signal is uninitialised.

Switch

Recall that each signal function exists in its own local time frame (Section 3.4.4). When a

residual signal function is switched in, its local time0 will not be time0 from the perspective

of the external network4. Consequently, if a residual signal function produces an uninitialised

signal, it could cause a signal to be undefined at some arbitrary time point in the external

network. This could be disastrous. To avoid this, the type of switch requires the residual signal

function to produce initialised signals:

switch : SF as (bs,E A) → (A → SF as (iniSV bs)) → SF as bs

However, this is not the case for decoupled variants of switching combinators (introduced in

Section 9.1.1). The initial output from the residual signal function of a decoupled switch is

never used, and thus the problem of an undefined value escaping its local time frame does not

arise. Indeed, the output of the residual signal function of dswitch can be entirely uninitialised:

dswitch : SF as (bs,E A) → (A → SF as (uniSV bs)) → SF as bs

In both cases there is no need to modify the input type of the residual signal function, as the

residual signal function can just ignore defined input if it is expecting it to be undefined.

4Except in the case of the switch occurring at time0.

CHAPTER 9. EXTENSIONS TO N-ARY FRP 114

Freeze

For the freeze combinator, the Continuous signal of “frozen” signal functions is initialised. But

care must be taken with the type of the frozen signal function. Consider: a signal function

must never receive undefined input, except at time0. A frozen signal function has already

been running for some amount of time, and thus (unless that amount of time is zero) is not at

its local time0 when switched-in again. Thus, even if the subordinate signal function accepts

uninitialised signals, the frozen signal function must not do so lest it receive an undefined value

after its local time0. The freeze combinator is therefore refined as follows:

freeze : SF as bs → SF as (bs,C ini (SF (iniSV as) bs))

Note that the output type of the frozen signal function does not need to be modified. If the

switched-in signal function produces initialised output in a context that expects uninitialised

signals, then the initial values can simply be discarded.

9.2.5 Summary and Related Work

This section extended the N-ary FRP language with uninitialised signals. The type system

ensures that undefined initial values are never used. The semantics of the modified primitives

were omitted as they were not crucial to the discussion. Their Agda encoding is available in

the online archive [1].

The refined type system is similar to that of Colaço and Pouzet [21], which addresses the

same problem in the context of the synchronous data-flow languages Lustre and Lucid Syn-

chrone. There are two main differences between this work and theirs. First, they only consider

static networks, whereas N-ary FRP allows dynamism. Second, theirs is a single-kinded setting,

whereas N-ary FRP is multi-kinded. Multi-kinded signals allow for greater precision, such as

expressing that Event signals may always be uninitialised.

9.3 Decoupledness Matrices

Chapter 7 introduced a type system for N-ary FRP with Feedback that rules out ill-defined

feedback. However, that type system is conservative, rejecting some programs that only contain

well-defined feedback. This section considers a further refinement of the type system that is

more permissive in the feedback it will accept.

9.3.1 Motivation

In Section 7.3.3 it was observed that a loop′ combinator can be defined, but that the type

system assigns the composite signal function the index cau when it should be assigned dec. For

a simpler example of the same issue, consider the following two signal functions:

accurate : SF (E A) (E A,E Unit) dec

accurate = (identity ≫ delayE 5) &&& (now ≫ identity)

inaccurate : SF (E A) (E A,E Unit) cau

inaccurate = (identity &&& now) ≫ (delayE 5 ∗∗∗ identity)

Both signal functions represent the same network (see Figure 9.1), yet one is typed as decoupled

while the other is typed as causal. The problem is that the decoupledness indices do not contain

CHAPTER 9. EXTENSIONS TO N-ARY FRP 115

Figure 9.1 The network underlying accurate and inaccurate

delayE 5

accurate / inaccurate

now

all decoupledness information, merely a conservative approximation of it. Thus, depending on

the order in which routing combinators are applied, different amounts of information is lost.

For example, identity &&& now is typed as causal, and that now is decoupled is forgotten. Or,

more precisely, it is forgotten that the second output signal is temporally decoupled from the

input signal.

Ideally, the decoupledness index of a signal function network should depend on the semantics

of the routing primitives used, not the particular way those routing primitives are used to express

its structure. The type-system refinement in the next section addresses this by ensuring that

the routing primitives (and dynamic combinators) precisely track which signals are temporally

decoupled from which.

9.3.2 Type System

N-ary FRP with Feedback indexes each signal function by a single decoupledness value, which

essentially describes whether all output signals are temporally decoupled from all input signals.

This leads to imprecision, because it is impossible to express that some output signals do

not instantaneously depend on some input signals. An alternative approach is to index each

signal function by a matrix of decoupledness values, with each element of the matrix describing

whether a single input signal is temporally decoupled from a single output signal. This allows

for far greater precision.

Decoupledness Matrices

Familiarity with Boolean matrices and basic operations on them is assumed. Consequently, this

subsection just introduces the syntax and omits the definitions.

The type Matrix m n denotes an m × n matrix of Dec values:

Matrix : N → N → Set

Horizontal and vertical matrix concatenation are denoted as follows:

++h : Matrix l m → Matrix l n → Matrix l (m + n)

++v : Matrix l n → Matrix m n → Matrix (l + m) n

The + and ∗ operators are overloaded for matrix addition and matrix multiplication, taking

∧ to be the underlying additive operator and ∨ to be the underlying multiplicative operator:

+ : Matrix m n → Matrix m n → Matrix m n

∗ : Matrix l m → Matrix m n → Matrix l n

The identity matrix is denoted I , taking dec to be the zero element and cau to be the unit

element:

CHAPTER 9. EXTENSIONS TO N-ARY FRP 116

I : Matrix n n

The zero matrix is a matrix consisting entirely of dec elements:

Mdec : Matrix m n

Finally, a function that extends a column vector horizontally by replicating that column has

the following type:

extend : Matrix m 1 → Matrix m n

Refined Signal Functions

In N-ary FRP, signal functions are parametrised on signal vector descriptors. To determine

the appropriately sized matrix for a signal function, the number of signals in its signal vectors

needs to be computed. This is achieved by the following function:

svlength : SVDesc → N

svlength (C A) = 1

svlength (E A) = 1

svlength (S A) = 1

svlength (as, bs) = svlength as + svlength bs

A matrix parametrised on signal vector descriptors can then be defined:

SVMatrix : SVDesc → SVDesc → Set

SVMatrix as bs = Matrix (svlength as) (svlength bs)

The refined signal function type is thus:

SF : (as bs : SVDesc) → SVMatrix as bs → Set

In this formulation, a signal function is decoupled if its matrix is Mdec (all input signals are

decoupled from all output signals).

9.3.3 Retyping the Primitives

The primitive signal functions can now be retyped.

Atomic Routers

For the atomic routers, each output signal either depends on an input signal instantaneously, or

it does not depend on it at all. If there is no dependency, then the signals are clearly temporally

decoupled. Thus, these primitives are indexed as follows:

identity : SF as as I

sfFst : SF (as, bs) as (I ++v Mdec)

sfSnd : SF (as, bs) bs (Mdec ++v I)

Recall that cau is the unit element and dec is the zero element. Thus, the identity matrix

(I) expresses that each output signal only depends instantaneously on its corresponding input

signal, and the zero matrix (Mdec) expresses that all output signals are decoupled from all input

signals. In this case, the zero matrix is used to express that the output signals are temporally

decoupled from the discarded input signals.

CHAPTER 9. EXTENSIONS TO N-ARY FRP 117

Acyclic Routing Combinators

The matrix for sequential composition is defined by matrix multiplication:

≫ : SF as bs m1 → SF bs cs m2 → SF as cs (m1 ∗ m2)

Intuitively, an output signal instantaneously depends on an input signal if there is any inter-

mediate signal that both depends instantaneously on the input signal and is instantaneously

depended on by the output signal.

The matrix for fan-out is defined by horizontal matrix concatenation:

&&& : SF as bs m1 → SF as cs m2 → SF as (bs, cs) (m1 ++h m2)

Dynamic Combinators

In the case of the freeze combinator, the second output is temporally decoupled from all inputs,

and the decoupledness of the first output is given by the decoupledness of its subordinate signal

function:

freeze : SF as bs m → SF as (bs,C (SF as bs m)) (m ++h Mdec)

The switch combinator is a little more complicated. At first glance, its decoupledness would

seem to be the matrix addition of the subordinate and residual signal functions. However,

note that the overall output of a switch depends instantaneously on the event signal, as at

the moment of switching the residual signal function is switched-in and the overall output is

taken from that. Thus, all output signals depend instantaneously on the event signal, and,

consequently, all output signals depend instantaneously on any signals that the Event signal

depends instantaneously upon. This can be expressed as follows:

switch : SF as (bs,E A) (m1 ++h me) → (A → SF as bs m2) → SF as bs (m1 + m2 + extend me)

Section 9.1.1 introduced decoupled switches : switching combinators whose output at the

moment of switching is that of the subordinate signal function. For these switches, the output

signals do not depend instantaneously on the event (hence the name). Thus, for example, the

type of a dswitch combinator would be:

dswitch : SF as (bs,E A) (m1 ++h me) → (A → SF as bs m2) → SF as bs (m1 + m2)

In Yampa the dswitch is often used because of this stronger decoupling, even though this is not

visible in its type (or checked by the compiler) and relies on the programmer to have a good

understanding of what she is doing.

Feedback Combinators

The loop combinator is easy to define by requiring the feedback signal function to be entirely

decoupled:

loop : SF (as, cs) bs (m1 ++v m2) → SF cs bs Mdec → SF as bs m1

However, with this more precise decoupling, explicitly separating the feedback and feed-forward

signal functions is unnecessary. Instead, the arrowLoop combinator could be used:

arrowLoop : SF (as, cs) (bs, cs) ((m11 ++v m21) ++h (m12 ++v Mdec)) → SF as bs (m11 + m12 ∗ m21)

CHAPTER 9. EXTENSIONS TO N-ARY FRP 118

Figure 9.2 The decoupledness matrix for arrowLoop

Mdec

m12

m21

m11as

bs

cs

This type may be best understood graphically (Figure 9.2). Essentially, it states that:

• the output to be fed-back cannot instantaneously depend on the fed-back input (Mdec);

• the output to be fed-back can depend on the overall input in any way (m12);

• the overall output can depend on the fed-back input in any way (m21);

• the resultant decoupledness matrix (m11 + m12 ∗ m21) is the addition of the direct

connections between the inputs and outputs (m11), and the connections that go around

the loop once (m12 ∗ m21).

Example: Inaccurate

Finally, consider the inaccurate signal function again. Its component signal functions are typed

as follows:

now : SF as (E Unit)Mdec

delayE : T ime+ → SF (E A) (E A)Mdec

∗∗∗ : SF as bs m1 → SF cs ds m2 → SF (as, cs) (bs, ds) ((m1 ++v Mdec) ++h (Mdec ++v m2))

Putting them together now assigns the inaccurate signal function the more accurateMdec index:

inaccurate : SF (E A) (E A,E Unit)Mdec

inaccurate = (identity &&& now) ≫ (delayE 5 ∗∗∗ identity)

9.3.4 Summary and Related Work

This section refined the type system of N-ary FRP with Feedback to more precisely track the

instantaneous dependencies between signals. The idea is that the type of each signal function

should record precisely which output signals are temporally decoupled from which input signals,

rather than just recording whether all input signals are temporally decoupled from all outputs

signals, as was the case previously. This information can be represented by a Boolean matrix,

and the matrices of the primitives can be defined by basic matrix operations. This N-ary FRP

variant will be referred to as N-ary FRP with Decoupledness Matrices.

CHAPTER 9. EXTENSIONS TO N-ARY FRP 119

The matrix approach was inspired by the structural types of Nilsson [91], which, in a setting

of modular equation systems, assigns incidence matrices to the types of equation-system frag-

ments as a means of statically detecting (structurally) over- and under-determined equations.

9.4 Conclusions

N-ary FRP with Uninitialised Signals can be embedded in Agda in a similar manner as N-ary

FRP with Feedback. The code for such an embedding is available in the online archive [1], but

is not included in this thesis as the modifications are mostly trivial, yet tedious and extensive,

coercions between initialised and uninitialised signals. An equivalent Haskell embedding has

not yet been encoded, and it remains to be seen whether the Haskell type system is up to the

task.

Programming with initialisation descriptors is similar to programming with decoupledness

descriptors, as they are both just type-level Booleans. Thus the same problem of Boolean

expressions not β-reducing arises, and the same potential solutions are relevant (see Section 7.7).

The type system of N-ary FRP with Decoupledness Matrices has been encoded in Agda.

However, defining library combinators using this type system is unpleasant. The lack of β-

reduction in the type indices is a lot harder to overcome when the expressions contain Boolean

matrices of unknown size, rather than just a finite number (typically no more than three)

of Booleans. The required matrix equivalences can be proved in Agda, but this is too much

work to be a practical approach. A type checker that can automatically solve Boolean matrix

constraints would seem to be essential for this type system to be viable.

N-ary FRP with Decoupledness Matrices has not yet been implemented. The main compli-

cation in extending the Agda embedding of N-ary FRP with Feedback is that it is no longer

possible to assign a single transition function to each signal function. Instead, a signal function

requires a set of transition functions to cater for all possible orders of execution. For example,

consider a signal function that has two input signals and two output signals, where the first

output instantaneously depends on the first input (and is decoupled from the second input) and

the second output instantaneously depends in the second input (and is decoupled from the first

input). The first output may be required before the second input is available, or the second

output may be required before the first input is available. Thus two transition functions are

needed, one for each order. More generally, a transition function is needed for every possible

order that the output signals can be demanded in. Identifying and implementing a minimal

set of such transition functions has been the subject of recent work in the context of code

generation for synchronous data-flow languages [78, 79, 106].

Chapter 10

Related Work

This chapter overviews other conceptual models of FRP, and discusses some of the safety

guarantees and optimisation techniques present in FRP and other reactive languages.

10.1 Conceptual Models of FRP

Devising conceptual models for FRP is nothing new. Daniels [32] has constructed a complete

formal semantics for a small Fran-inspired CFRP language called CONTROL. The semantics of

CONTROL assume exact real numbers and an idealised implementation with no approximation

errors. His approach is similar to that taken by this thesis: define the desired semantics first as

a basis for implementation, rather than giving semantics to an existing implementation.

CONTROL is a single-kinded language: only continuous-time behaviours are a first-class

abstraction. Both signals and signal generators are definable in CONTROL, but this is not

distinguished in their types (they are both behaviours). Structural switching is controlled by

Boolean behaviours, with the moment of switching being when the Boolean is first true. The

residual behaviour does not depend on any signal value, and thus is determined in advance.

Consequently CONTROL is only structurally dynamic, unlike most FRP variants which are

highly structurally dynamic.

Instantaneous feedback can be expressed in CONTROL, including ill-defined feedback. How-

ever, the semantics ensure that two noteworthy classes of instantaneous feedback are well-

defined. First, integration is defined in a decoupled manner, so a signal may depend instanta-

neously on its own integral. Second, the semantics of switching is such that whether a structural

switch occurs is determined under the assumption that the switch has not occurred. The latter

is useful because CONTROL’s switching combinator defines its overall value at the moment of

switching to be that of the residual behaviour. Thus the Boolean behaviour that controls a

structural switch can instantaneously depend on the overall value of the switching combinator,

without causing divergence in a situation where the value of the subordinate signal triggers a

structural switch but the value of the residual signal does not.

The CFRP model defined in this thesis is based on that of Wan and Hudak [127]. The

aim of their work was to show that a sampled implementation can converge to their semantics

as the sampling rate tends to zero, provided certain constrains are placed on the primitives.

120

CHAPTER 10. RELATED WORK 121

Table 10.1 Naming conventions for signal kinds

FRP Variant Signal Kind
N-ary FRP Event Signal Step Signal Continuous Signal
Reactive Event Reactive Value Time Function
Grapefruit Discrete Signal Segmented Signal Continuous Signal

For example, only behaviours that converge uniformly can be integrated, and “spikes” in the

input signal to the when primitive are prohibited. N-ary FRP takes a similar approach in that

the semantics of some primitive signal functions are only defined for well-behaved input signals

(see Section 4.4). All switching combinators in Wan and Hudak’s model are decoupled (see

Section 9.1.1), and they do not consider feedback.

More recently, King [65] has defined a semantics for a small set of FRP primitives that

he uses to define a subset of both the Yampa [92] and FrTime [23] implementations. King’s

primitives are expressed using temporal logic, which he also uses to state and prove properties

about the primitives. In particular, he is concerned with timestep irrelevance (the semantics of

a primitive should be independent of the sampling rate used in an implementation) and time

invariance (the semantics of a primitive should not depend on the global time, only its local

time frame). These are both properties that hold in the N-ary FRP conceptual model. The

Yampa and FrTime primitives that King does not define are those that depend on the sampling

rate, and thus do not satisfy the timestep-irrelevance property.

In both King’s and Wan and Hudak’s models, continuous-time behaviours and discrete-time

events are distinct first-class abstractions in the languages. However, unlike N-ary FRP, step

signals are not considered separately. Also, along with CONTROL, these models are based

around first-class signals (rather than abstract first-class signal functions), and consequently

lack a notion of freezing signal functions.

The UFRP model defined in this thesis is based on the semantics of Yampa defined by

Courtney [25]. However, in his semantics, event signals are defined as continuous-time signals

carrying option types (corresponding directly to the Yampa implementation). This differs from

the UFRP model, where the semantics of an Event signal is a finite list of occurrences up to

the current time. The UFRP model is defined in this way to make the correspondence with

the other models in this thesis clearer. It also allows for a computable semantics to be given

to switch, which cannot be done in Courtney’s model (as the time of the first event occurrence

cannot be computed) [25, Chapter 4].

Two Haskell-embedded FRP implementations currently under development are Reactive [37]

and Grapefruit [63]. They both identify the three signal kinds (see Table 10.1), and use a push-

based implementation for step and event signals. Reactive uses a pull-based implementation for

continuous signals, whereas, at time of writing, the implementation of continuous signals is still

under development in Grapefruit. Signals are first class in both systems, though Grapefruit

also has a first-class signal-function abstraction for switching purposes.

Central to FRP’s hybrid capabilities is the notion of events occurring at specific points

in time, and specifying reactions to such events. This means asking whether some event has

occurred yet or not. A natural way of doing this is to compare the time associated with the

CHAPTER 10. RELATED WORK 122

event with the present time. However, this directly leads to a causality problem: how can the

precise future time of an event that has not yet occurred be known in general? Predicating an

FRP semantics on such a capability would make the whole model non-causal, severely limiting

its usefulness for describing the meaning of FRP programs.

The key to resolving this dilemma is to concentrate on the original question above, whether

an event has occurred yet or not, not the exact future time of its occurrence. In the original

work on Fran, this was achieved through a careful definition of a customised time domain with

an ordering that permitted deciding whether one time value is before another without knowing

the exact value of the second [38]. The same problem is addressed in a similar way in Reactive

by making events “future values”. Grapefruit deals with the issue by considering all possible

interleavings of future event occurrences, relying on laziness to ensure that only the correct

interleaving is evaluated. In the N-ary FRP model, this problem is addressed more directly by

building a notion of observation only up to some specific point in time into the definitions of

Event and Step signals. This leads to a clear and simple semantics as it does not rely on any

auxiliary notions, and also to a finitary semantics for events and changes. This approach is

unlikely to be very useful as a direct basis for implementation, but the purpose of the N-ary

FRP semantics is not to serve as a basis for some specific implementation, but rather to serve

as a reference relevant for any implementation.

In CONTROL, yet another approach is taken by assigning a signal a set of times for which

it is alive [32], rather than a specific start time or local time frame. Whether a structural switch

has occurred is then determined by whether the Boolean behaviour (that controls the switch) is

true for any time in the set (of times for which it is alive) up to the present, without the precise

time point at which it first becomes true being required. This also allows structural switches

that occur both at and immediately after a time point to be expressed, by using sets with and

without a minimum element, respectively. The latter is a capacity that is lacking in the N-ary

FRP model (see Section 9.1).

Elerea [99, 100] is another Haskell embedding of FRP currently in development. Elerea has

first-class signals and signal generators (as distinct types), but is otherwise in many ways similar

to Yampa, being a single-kinded pull-based system. In contrast to Yampa, Elerea has a discrete-

time semantics that doesn’t abstract away from the discrete implementation. Yampa provides a

set of primitives that operate on conceptually continuous-time signals and conceptually discrete-

time events, trying to hide the sampling rate from the programmer. Elerea, on the other hand,

exposes the sampling rate, reducing the number of primitives required. Similarly, whereas

Yampa provides an abstract event type that is internally implemented as an option type, Elerea

directly uses signals carrying option types (or Booleans) to achieve event-like behaviour.

Dynamism is expressed in Version 2 of Elerea through a monadic join for signals [100]:

join : Signal (Signal A) → Signal A

The same approach is taken by King [65], who shows how both the switch combinator of Yampa

and the switch combinator of FrTime can be defined in terms of his join primitives.

One of the key aspects of FRP is synchrony (reactions are considered to be instantaneous).

However, many of the concepts discussed in this thesis are also relevant in an asynchronous

setting (where reactions can take a non-zero amount of time). A good example of this is

Fudgets [16], an asynchronous reactive language embedded in Haskell. Fudgets was designed

CHAPTER 10. RELATED WORK 123

for programming graphical user interfaces, but it can also be used for other reactive domains.

Like N-ary FRP (and UFRP), Fudgets is based around a first-class signal-function abstraction

(called a fudget), and provides for feedback, dynamism and higher-order data-flow. The first-

class status of fudgets is exploited for many of the benefits discussed in Section 3.5, including

optimisation and the ability to freeze running fudgets. Similar issues also arise, such as the

awkwardness of using combinators to express complex routing in a point-free style, and thus

the need for some convenient syntax [15] (as discussed in Section 3.4.6). The key difference

between Fudgets and FRP is that Fudgets has no concept of continuous-time signals, with the

fudgets operating over discrete streams (analogous to FRP’s event signals, except that, because

of the asynchrony, occurrences are not fixed at specific time points). However, a fudget is not

just a stream processor: unlike N-ary FRP (and UFRP), a fudget also has a connection to the

outside world through which it can receive input and emit output.

10.2 Static Safety Checks

The synchronous data-flow languages [7, 46, 47] prevent undesirable network structures by

performing static analyses at compile time. Domain-specific constraints such as causality [30]

and initialisation of signals [21] can be checked in a fine-grained manner, but this often relies

on the language having a static first-order structure. For example, the work on extending

Lucid Synchrone with dynamism and higher-order data-flow [17, 22] has come at the cost of

much more conservative analyses: explicit decoupling and initialisation of signals must appear

syntactically within each node definition [104].

FRP approaches the problem from the other direction. Most FRP implementations are

highly expressive, but lack totality and termination guarantees. In many cases this is unavoid-

able because the FRP variant is embedded in a host-language that lacks those guarantees.

Nevertheless, some FRP implementations, similarly to the N-ary FRP embeddings described

in this thesis, do guarantee that the reactive level of the language is total.

Real-Time FRP (RT-FRP) [128], a small and experimental CFRP variant, is one such

language. The aim of RT-FRP was to establish time and space bounds on the reactive level,

and thus totality was necessary. Infinite switching at a point in time is prevented by having

residual signals start one-time-step after they are switched-in (time is modelled discretely). Note

that this is distinct from decoupled switching combinators (Section 9.1.1), where the residual

signal (or signal function) still starts at the moment of switching, even though the output is not

observable until afterwards. Decoupled feedback is permitted in RT-FRP, but instantaneous

feedback is disallowed by a specialised type system that only brings the signal identifier into

scope in a recursive signal definition when it appears under a one-time-step–delay primitive.

The exception to this is that the event signal that controls a switch may depend instantaneously

on the overall value of the switching combinator, but this is safe because the residual signal

function does not start until the next time step. Uninitialised signals are simply not definable.

However, RT-FRP has very limited capabilities for abstracting over and combining reactive

entities, essentially only being concerned with monolithic reactive expressions. There are no

reactive constructs at the functional level: it is only used to perform pointwise operations

on signals. A consequence of this is that RT-FRP is only structurally dynamic, not highly

CHAPTER 10. RELATED WORK 124

structurally dynamic; but this restriction is hard to avoid if space and time guarantees are

required. In terms of implementation, the operational semantics of RT-FRP is similar to the

decoupled transition functions of N-ary FRP with Feedback (Section 7.5.1), separating out the

state update and computation of the signal value.

Version 1 of Elerea takes a somewhat different approach to avoiding ill-defined feedback,

by having the implementation automatically insert one-time-step delays into instantaneous

feedback loops [99]. This only applies to loops that contain a stateful signal function, so stateless

feedback can still diverge. Nevertheless, this avoids some instances of deadlock, without placing

restrictions on the programs that can be defined. However, this breaks referential transparency

(as whether a delay is inserted into a stateful signal function depends upon the context in which

that signal function is used), and the programmer does not know exactly where these delays

are being inserted. Consequently, this feature has been depreciated from Version 2 of Elerea.

Recently, Krishnaswami and Benton [67] have studied non-expansive (causal) and contrac-

tive (decoupled) stream functions in the setting of FRP, with the aim of characterising precisely

when feedback is well-defined. This is similar to the approach taken by N-ary FRP with Feed-

back (Chapter 7), though theirs is a discrete-time setting with first-class signals.

10.3 Optimisation of Reactive Languages

Incremental evaluation and change propagation have been studied extensively as optimisation

techniques [3, 4, 108]. However, the problem becomes significantly more complex in a reactive

setting. The notion of time passing leads to signal functions whose output can change even when

their input does not, and structural dynamism means that many optimisation opportunities only

arise at run-time. The former situation has been well-studied in the static first-order context

of the synchronous data-flow languages [49, 70, 106], but the latter is a more open problem.

FrTime, a push-based FRP language embedded in the DrScheme environment [40], uses a

variety of optimisation techniques [23]. The inherent change propagation of the push-based

execution is enhanced by performing run-time equality checks on recomputed signal values

to determine whether they really have changed [24]. It also uses a static optimisation called

lowering, which reduces a data-flow network by fusing together composite signal functions into

single signal functions (discarding the routing information) [14]. In FrTime, this technique is

only applied to lifted pure functions. For example, (in the N-ary FRP setting) a typical lowering

optimisation would be:

(lift f ≫ lift g) lift (g ◦ f)

FrTime’s lowering optimisations are applied statically at compile time, which allows for sub-

stantial optimisation of source code, but does not allow dynamic optimisation of the network

after structural switches. Lowering optimisations are also applied by Yampa [90] and Version 1

of Elerea [99], albeit not to the extent of FrTime. However, Yampa can lower some stateful sig-

nal functions as well as stateless ones. Yampa performs its lowering optimisations dynamically,

which suffers from additional run-time overhead, but does allow for continued optimisation

after structural switches. Experimentation in FrTime and Yampa has suggested that lowering

is generally a worthwhile optimisation, but that in some cases it can have a negative impact.

CHAPTER 10. RELATED WORK 125

This latter cases arises because of the implementation overhead in Yampa [90], and the loss of

fine-grained change propagation in FrTime [23].

A recent development has been a static optimisation technique for Causal Commutative

Arrows [75, 77] that lowers any static arrow network (which may include cycles) to a single

arrow with a single internal state. When applied to some examples from Yampa (where a

signal function is an arrow), the elimination of most of the arrow infrastructure has resulted in

impressive1 performance gains. However, this technique does not extend to networks containing

switching combinators, and so cannot be applied to arbitrary Yampa programs (though it could

be applied to static sub-networks).

Finally, recent work on Functional Hybrid Modelling has shown that, in certain cases, a

just-in-time compilation technique can be a good fit for highly dynamic network structures

[44]. At each structural switch the network is recompiled, allowing efficient execution of the

(temporarily) static network between each structural switch.

10.4 Conclusions

Many FRP variants have semantic models. However, to my knowledge, the N-ary FRP model is

the first to cater for multi-kinded signals in a setting with a first-class signal-function abstraction

(where signals are second class).

Some reactive languages perform causality checks to ensure that ill-defined feedback cannot

be formed, and some perform initialisation checks to ensure that undefined initial signal values

are never used. There are also reactive languages that give totality guarantees for the reactive

level of the language. However, such guarantees have not before been given in the presence of

highly dynamic system structure.

Efficiently implementing FRP is the subject of ongoing research. Existing FRP implemen-

tations use a variety of approaches, and incorporate a wide range of optimisations. Many of

the optimisations discussed in Chapter 8 of this thesis have proved beneficial in practice (such

as in the latest version of Yampa [90]), but they have not yet been systematically applied in

the way advocated here.

1Ranging between 5 to 200 times faster for the benchmarks tried [75].

Chapter 11

Summary and Future Work

This chapter summarises the content of this thesis, and discusses avenues for future work.

11.1 Summary

Chapter 1 introduced reactive programming, and the embedded approach to implementing

domain-specific languages. Most implementations of FRP to date have been domain-specific

embeddings within Haskell.

Chapter 2 introduced the notation of Agda, and the variant Agda syntax used to express

the semantics and example code in this thesis.

Chapter 3 motivated the functional approach to reactive programming (Section 3.1); in-

troduced the fundamental concepts of FRP (Section 3.2); and described CFRP (Section 3.3)

and UFRP (Section 3.4), two conceptual models on which several FRP variants are based.

The distinguishing features between the two are that CFRP has first-class signals (and sig-

nal generators) and distinct discrete-time and continuous-time signals, whereas UFRP is based

around a first-class signal-function abstraction and only really has one signal kind. The pros

and cons of each approach were then discussed, both in terms of semantics and implementation

(Section 3.5). Two points of particular note are that pure implementations of first-class signals

have led to space and time leaks, and that the UFRP model hides much of the network routing

thus limiting the scope for optimisation.

Chapter 4 introduced a new FRP language called N-ary FRP. While this language was

inspired by UFRP, it has a number of important differences including three distinct signal kinds

and n-ary signal functions. These features were introduced to allow kind-specific operations on

signals while overcoming the routing limitations of UFRP. To my knowledge, this is the first

FRP language to combine multi-kinded signals with a first-class signal-function abstraction.

Chapter 5 described an embedded implementation of N-ary FRP in both Agda and Haskell.

The implementation is essentially the same in both languages, the differences being due to

the differing type systems of the two host languages. These embeddings serve three purposes.

First, they demonstrate that signal-function–based FRP can be implemented purely and sim-

ply. Second, the Haskell embedding confirms that the N-ary FRP type system is suitable for

embedding in a mainstream functional language. Third, the Agda embedding guarantees the

126

CHAPTER 11. SUMMARY AND FUTURE WORK 127

totality of the implementation and of the example N-ary FRP programs. While this does not

prove anything about the corresponding Haskell embedding, the close correspondence between

the two gives a high level of confidence.

Chapter 6 introduced temporal logic, and used it to express several temporal properties of

signals and signal functions in terms of the N-ary FRP conceptual model. In particular, the

properties of causality, decoupledness and strict decoupledness were formalised.

Chapter 7 extended N-ary FRP with a reactive-level feedback combinator. Through a type-

system refinement, the decoupledness and strict decoupledness properties were used to justify

the claim that all feedback expressible by this combinator is well-defined. To my knowledge,

this is the first continuous-time semantics of FRP that allows feedback while guaranteeing that

it is well-defined.

Chapter 8 considered the notion of change in the setting of N-ary FRP, and the change-based

optimisations that are possible. First the push- and pull-based approaches to implementing

FRP were discussed (Section 8.1). A signal-kind–specific notion of change was then defined,

along with a number of change-based properties of signals and signal functions (Section 8.3).

Finally, two approaches to change-based optimisation were considered: structural optimisation

and change propagation (Section 8.5). These optimisations have not yet been applied to an

N-ary FRP implementation, but, as discussed, many of them appear in a variety of forms in

other FRP implementations.

Chapter 9 considered extensions to N-ary FRP. Section 9.1 discussed the problems that

arise when attempting to extend the N-ary FRP model to account for event occurrences (and

changes in Step signals) immediately after a time point. Despite the conceptual challenges, such

an extension seems necessary to account for several useful primitives that appear in many FRP

implementations. Section 9.2 extended N-ary FRP with uninitialised signals. A type-system

refinement ensures that the initial undefined value of such a signal is never used. Guaranteeing

the correct use of uninitialised signals has been studied before [21], but, to my knowledge, not in

a highly structurally dynamic setting, nor in the presence of distinct signal kinds. Section 9.3

further refined the type system of N-ary FRP with Feedback by using Boolean matrices to

precisely track instantaneous dependencies between signals.

Finally, Chapter 10 discussed related work (omitting that which had already been described

in the individual chapters).

All of the code in this thesis has been formulated in Agda without the syntactic sugar used

for presentational purposes (see Section 2.2). However, not all of the lemmas stated have yet

been formally proved (the proofs completed thus far are available in the online archive [1]).

Specifically, the properties of the dynamic combinators and the more complicated primitive

signal functions remain to be verified. This is not due to any particular technical difficulty, but

rather that proving properties in Agda is a time-consuming and tedious process. That said,

formal verification in Agda has been extremely helpful while developing the N-ary FRP model

and temporal properties, particularly in identifying counter-intuitive aspects of the model.

CHAPTER 11. SUMMARY AND FUTURE WORK 128

11.2 Future Work

Yampa provides a set of collection-based switching combinators that allow dynamic collections

of signal functions to be maintained [92]. Signal functions can be added to and removed from

such collections during execution. This capability has proved extremely useful in applications

such as video games [27], visual tracking [92], and sound synthesis [42]. It would be interesting

to extend N-ary FRP with such combinators, and to determine if they can be encoded in terms

of switch and freeze, or whether additional primitive dynamic combinators are required.

The combinators used for structuring N-ary FRP are based on the Arrow Framework [59].

Programming directly with such combinators is awkward for more complicated arrows, and so a

syntactic sugar was devised to aid writing of arrow code [101]. That syntax cannot be leveraged

directly for N-ary FRP, but something similar (such as that in Section 7.4.2) would certainly be

a desirable feature in an N-ary FRP implementation. For example, the FHM language Hydra

[44] uses an arrow-inspired syntax for expressing signal relations, with a recent implementation

using Haskell’s quasiquoting to interpret the syntax [43]. A similar approach could be taken

by an N-ary FRP implementation. Another recent development has been the Arrow Calculus

[74], an alternative (and equivalent) notation for arrows, structured more along the lines of

traditional lambda calculus. The Arrow Calculus does not yet support feedback, but a syntax

based on the Arrow Calculus for programming at the reactive level seems appealing (replacing

the five routing primitives).

Reconfigurable systems, including those that receive software updates whilst running, are

becoming increasingly prevalent [22, 53]. Examples can be found in common items such as

digital televisions and mobile telephones, as well as in safety-critical systems such as air-traffic

control. Semantically, FRP’s capacity for dynamism and higher-order data-flow is ideal to

express such systems, as new programs (signal functions) can be received as system inputs.

This is not yet possible in any FRP implementations, but there has been work in Haskell to

allow dynamic loading of new code [98, 119], which would make a good starting point for future

work in this direction.

The optimisations discussed in Chapter 8 have yet to be applied to a realistic implementation

of N-ary FRP. While many of the optimisations appear in other languages in various forms, they

need to be tested in a systematic way to determine their effectiveness. More generally, there

is a lack of a standard set of benchmarks for FRP. Such a set would allow the expressiveness,

efficiency and optimisation techniques of the different varieties of FRP to be compared more

thoroughly than is currently the case.

Many of the domain-specific constraints described in this thesis, such as ensuring the absence

of instantaneous feedback (Chapter 7) and ensuring that the initial value of an uninitialised

signal is never used (Section 9.2), have been encoded using type-level Booleans. It would be

interesting to embed N-ary FRP in a language with an in-built Boolean constraint solver, such

as Dependent ML [130], which should avoid the need for the manual resolving of trivial Boolean

constraints that is required in the embeddings described in this thesis.

As discussed in Section 9.1, a natural extension of N-ary FRP is to consider events and

changes that happen immediately after a time point. Such functionality is already present in

many discretely sampled FRP implementations, where immediately after is approximated by

CHAPTER 11. SUMMARY AND FUTURE WORK 129

the next time step. However the N-ary FRP model cannot express such functionality. The most

promising approach for extending N-ary FRP in this direction would seem to be one based on

super-dense time [81, 84, 132].

Finally, note that the only implementations of N-ary FRP thus far are the proof-of-concept

prototypes described in this thesis (chapters 5 and 7). The long-term aim of this work is

an efficient scalable implementation of N-ary FRP that respects the conceptual model and

incorporates domain-specific safety constraints.

Bibliography

[1] URL www.cs.nott.ac.uk/Research/fop/nas-thesis-code.tar.gz.

[2] Simulink User’s Guide, Version 7.6. 3 Apple Hill Drive, Natick, MA, 2010. URL

www.mathworks.com/help/toolbox/simulink/.

[3] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming.

In Principles of Programming Languages (POPL ’02), pages 247–259. ACM, 2002.

[4] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-adjusting computa-

tion. In Principles of Programming Languages (POPL ’08), pages 309–322. ACM, 2008.

[5] Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux

équations intégrales. Fundamenta Mathematicae, 3:133–181, 1922.

[6] Albert Benveniste and Gérard Berry. Real-time systems design and programming. Pro-

ceedings of the IEEE, 79(9):1270–1282, 1991.

[7] Albert Benveniste, Paul Caspi, Stephen Edwards, Nicolas Halbwachs, Paul Le Guernic,

and Robert de Simone. The synchronous languages twelve years later. Proceedings of the

IEEE, Special issue on embedded systems, 91(1):64–83, 2003.

[8] Gérard Berry. Real time programming: Special purpose or general purpose languages. In

IFIP Congress, pages 11–17, 1989.

[9] Gérard Berry. The foundations of Esterel. In Proof, Language, and Interaction: Essays

in Honour of Robin Milner, pages 425–454. MIT Press, 2000.

[10] Gérard Berry and Georges Gonthier. The Esterel synchronous programming language:

Design, semantics, implementation. Science of Computer Programming, 19(2):87–152,

1992.

[11] Richard S. Bird. Introduction to Functional Programming Using Haskell. Prentice-Hall,

1998.

[12] Kristopher J. Blom. Dynamic Interactive Virtual Environments. PhD thesis, Department

of Informatics, University of Hamburg, 2009.

[13] Ana Bove and Peter Dybjer. Dependent types at work. In Language Engineering and

Rigorous Software Development International LerNet ALFA Summer School, pages 57–99.

Springer, 2008.

130

www.cs.nott.ac.uk/Research/fop/nas-thesis-code.tar.gz
www.mathworks.com/help/toolbox/simulink/

BIBLIOGRAPHY 131

[14] Kimberley Burchett, Gregory H. Cooper, and Shriram Krishnamurthi. Lowering: A static

optimization technique for transparent functional reactivity. In Partial Evaluation and

Program Manipulation (PEPM ’07), pages 71–80. ACM, 2007.

[15] Magnus Carlsson. ProdArrows — arrows for fudgets, 2001. URL

www.carlssonia.org/~magnus/ogi/ProdArrows.

[16] Magnus Carlsson and Thomas Hallgren. Fudgets — Purely Functional Processes with

applications to Graphical User Interfaces. PhD thesis, Chalmers University of Technology,

1998.

[17] Paul Caspi and Marc Pouzet. Synchronous Kahn networks. In International Conference

on Functional Programming (ICFP ’96), pages 226–238. ACM, 1996.

[18] Adam Cataldo, Edward Lee, Xiaojun Liu, Eleftherios Matsikoudis, and Haiyang Zheng.

Discrete-event systems: Generalizing metric spaces and fixed-point semantics. Technical

report, EECS Department, University of California, Berkeley, 2005.

[19] François E. Cellier and Ernesto Kofman. Continuous System Simulation. Springer, 2006.

[20] Mun Hon Cheong. Functional programming and 3D games. BEng thesis, University of

New South Wales, 2005.

[21] Jean-Louis Colaço and Marc Pouzet. Type-based initialization analysis of a synchronous

data-flow language. Software Tools for Technology Transfer, 6(3):245–255, 2004.

[22] Jean-Louis Colaço, Alain Girault, Grégoire Hamon, and Marc Pouzet. Towards a higher-

order synchronous data-flow language. In Embedded Software (EMSOFT ’04), pages

230–239. ACM, 2004.

[23] Gregory H. Cooper. Integrating Dataflow Evaluation into a Practical Higher-Order Call-

by-Value Language. PhD thesis, Department of Computer Science, Brown University,

2008.

[24] Gregory H. Cooper and Shriram Krishnamurthi. Embedding dynamic dataflow in a call-

by-value language. In European Symposium on Programming (ESOP ’06), pages 294–308.

Springer, 2006.

[25] Antony Courtney. Modeling User Interfaces in a Functional Language. PhD thesis, Yale

University, 2004.

[26] Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In Haskell

Workshop (Haskell ’01), pages 41–69. Elsevier, 2001.

[27] Antony Courtney, Henrik Nilsson, and John Peterson. The Yampa arcade. In Haskell

Workshop (Haskell ’03), pages 7–18. ACM, 2003.

[28] Duncan Coutts. Partial evaluation for domain-specific embedded languages in a higher

order typed language. Transfer dissertation, Oxford University, 2004.

www.carlssonia.org/~magnus/ogi/ProdArrows

BIBLIOGRAPHY 132

[29] P.J.L. Cuijpers, M.A. Reniers, and A.G. Engels. Beyond Zeno-behaviour. Technical

report, Department of Computer Science, Eindhoven University of Technology, 2001.

[30] Pascal Cuoq and Marc Pouzet. Modular causality in a synchronous stream language. In

European Symposium on Programming (ESOP ’01), pages 237–251. Springer, 2001.

[31] Haskell B. Curry. Functionality in combinatory logic. Proceedings of the National Academy

of Sciences, 20(11):584–590, 1934.

[32] Anthony Daniels. A Semantics for Functions and Behaviours. PhD thesis, University of

Nottingham, 1999.

[33] Nils Anders Danielsson. Beating the productivity checker using embedded languages.

In Partiality and Recursion in Interactive Theorem Provers (PAR ’10), pages 29–48.

EPTCS, 2010.

[34] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large

clusters. In Operating System Design and Implementation (OSDI ’04), pages 137–150.

USENIX Association, 2004.

[35] Stephen A. Edwards and Edward A. Lee. The semantics and execution of a synchronous

block-diagram language. Science of Computer Programming, 48(1):21–42, 2003.

[36] Conal Elliott. Functional implementations of continuous modeled animation. In Program-

ming Language Implementation and Logic Programming / Algebraic and Logic Program-

ming (PLILP/ALP ’98), pages 284–299. Springer, 1998.

[37] Conal Elliott. Push-pull functional reactive programming. In Haskell Symposium (Haskell

’09), pages 25–36. ACM, 2009.

[38] Conal Elliott and Paul Hudak. Functional reactive animation. In International Conference

on Functional Programming (ICFP ’97), pages 263–273. ACM, 1997.

[39] Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embedded languages. Jour-

nal of Functional Programming, 13(3):455–481, 2003.

[40] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krish-

namurthi, Paul Steckler, and Matthias Felleisen. DrScheme: A programming environment

for Scheme. Journal of Functional Programming, 12(2):159–182, 2002.

[41] Tim Freeman and Frank Pfenning. Refinement types for ML. In Programming Language

Design and Implementation (PLDI ’91), pages 268–277. ACM, 1991.

[42] George Giorgidze and Henrik Nilsson. Switched-on Yampa: Declarative programming of

modular synthesizers. In Practical Aspects of Declarative Languages (PADL ’08), pages

282–298. Springer, 2008.

[43] George Giorgidze and Henrik Nilsson. Embedding a functional hybrid modelling language

in Haskell. In Implementation and Application of Functional Languages (IFL ’08), pages

138–155. Springer, 2011.

BIBLIOGRAPHY 133

[44] George Giorgidze and Henrik Nilsson. Mixed-level embedding and JIT compilation for an

iteratively staged DSL. In Functional and Constraint Logic Programming (WFLP ’10),

pages 48–65. Springer, 2011.

[45] Louis-Julien Guillemette and Stefan Monnier. One vote for type families in Haskell! In

Trends in Functional Programming (TFP ’08), pages 81–96. Intellect, 2009.

[46] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. The Springer Inter-

national Series in Engineering and Computer Science. Springer, 1993.

[47] Nicolas Halbwachs. Synchronous programming of reactive systems, a tutorial and com-

mented bibliography. In Computer Aided Verification (CAV ’98), pages 1–16. Springer,

1998.

[48] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous

data-flow programming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[49] Nicolas Halbwachs, Pascal Raymond, and Christophe Ratel. Generating efficient code

from data-flow programs. In Programming Language Implementation and Logic Program-

ming (PLILP ’91), pages 207–218. Springer, 1991.

[50] D. Harel and A. Pnueli. On the development of reactive systems. In Logics and Models

of Concurrent Systems, pages 477–498. 1985.

[51] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the type inference

process. In International Conference on Functional Programming (ICFP ’03), pages 3–13.

ACM, 2003.

[52] Thomas A. Henzinger. The theory of hybrid automata. In Logics in Computer Science

(LICS ’96), pages 278–292. IEEE Computer Society, 1996.

[53] Michael Hicks. Dynamic Software Updating. PhD thesis, Department of Computer and

Information Science, University of Pennsylvania, 2001.

[54] William A. Howard. The formulae-as-types notion of construction. In To H.B. Curry:

Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. Academic

Press, 1980.

[55] Paul Hudak. Modular domain specific languages and tools. In International Conference

on Software Reuse (ICSR ’98), pages 134–142. IEEE Computer Society, 1998.

[56] Paul Hudak. The Haskell School of Expression: Learning Functional Programming

through Multimedia. Cambridge University Press, 2000.

[57] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and

functional reactive programming. In Advanced Functional Programming (AFP ’02), pages

159–187. Springer, 2003.

[58] John Hughes. Why functional programming matters. In Research Topics in Functional

Programming, pages 17–42. Addison-Wesley, 1990.

BIBLIOGRAPHY 134

[59] John Hughes. Generalising monads to arrows. Science of Computer Programming, 37

(1–3):67–111, 2000.

[60] Graham Hutton. Programming in Haskell. Cambridge University Press, 2007.

[61] Graham Hutton and Mauro Jaskelioff. Representing contractive functions on streams.

Journal of Functional Programming, 2011. Submitted.

[62] Wolfgang Jeltsch. Improving push-based FRP. In Draft Proceedings of Trends in Func-

tional Programming (TFP ’08), pages 179–193, 2008.

[63] Wolfgang Jeltsch. Signals, not generators! In Trends in Functional Programming (TFP

’09), pages 145–160. Intellect, 2010.

[64] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn.

Simple unification-based type inference for GADTs. In International Conference on Func-

tional Programming (ICFP ’06), pages 50–61. ACM, 2006.

[65] Christopher T. King. An axiomatic semantics for functional reactive programming. Mas-

ter’s thesis, Worcester Polytechnic Institute, 2008.

[66] Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type functions. In

Reflections on the Work of C.A.R. Hoare, chapter 14, pages 301–331. Springer, 2010.

[67] Neelakantan R. Krishnaswami and Nick Benton. Ultrametric semantics of reactive pro-

grams. In Logic in Computer Science (LICS ’11), pages 257–266. IEEE Computer Society,

2011.

[68] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire. Programming

real-time applications with Signal. Proceedings of the IEEE, 79(9):1321–1336, 1991.

[69] Edward A. Lee. Embedded software. Advances in Computers, 56:56–97, 2002.

[70] Edward A. Lee and David G. Messerschmitt. Static scheduling of synchronous data flow

programs for digital signal processing. IEEE Transactions on Computers, 36(1):24–35,

1987.

[71] Edward A. Lee and Haiyang Zheng. Leveraging synchronous language principles for het-

erogeneous modeling and design of embedded systems. In Embedded Software (EMSOFT

’07), pages 114–123. ACM, 2007.

[72] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In Domain-Specific

Languages (DSL ’99), pages 109–122. ACM, 1999.

[73] Daniel R. Licata and Robert Harper. A formulation of Dependent ML with explicit

equality proofs. Technical report, School of Computer Science, Carnegie Mellon Univer-

sity, 2005.

[74] Sam Lindley, Philip Wadler, and Jeremy Yallop. The arrow calculus. Technical report,

School of Informatics, University of Edinburgh, 2008.

BIBLIOGRAPHY 135

[75] Hai Liu. The Theory and Practice of Causal Commutative Arrows. PhD thesis, Depart-

ment of Computer Science, Yale University, 2011.

[76] Hai Liu and Paul Hudak. Plugging a space leak with an arrow. Electronic Notes in

Theoretical Computer Science, 193:29–45, 2007.

[77] Hai Liu, Eric Cheng, and Paul Hudak. Causal commutative arrows and their optimization.

In International Conference on Functional Programming (ICFP ’09), pages 35–46. ACM,

2009.

[78] Roberto Lublinerman and Stavros Tripakis. Modularity vs. reusability: Code generation

from synchronous block diagrams. In Design, Automation and Test in Europe (DATE

’08), pages 1504–1509, 2008.

[79] Roberto Lublinerman, Christian Szegedy, and Stavros Tripakis. Modular code generation

from synchronous block diagrams: Modularity vs. code size. In Principles of Programming

Languages (POPL ’09), pages 78–89. ACM, 2009.

[80] Geoffrey Mainland, Greg Morrisett, and Matt Welsh. Flask: Staged functional program-

ming for sensor networks. In International Conference on Functional Programming (ICFP

’08), pages 335–345. ACM, 2008.

[81] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. In Real-

Time: Theory in Practice, pages 447–484. Springer, 1992.

[82] Sharad Malik. Analysis of cyclic combinational circuits. Computer-Aided Design, 13(7):

950–956, 1994.

[83] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer, 1992.

[84] Zohar Manna and Amir Pnueli. Verifying hybrid systems. Hybrid Systems, 736:4–35,

1993.

[85] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.

Springer, 1995.

[86] Simon Marlow. The Haskell Report, 2010. URL www.haskell.org.

[87] William I. McLaughlin. Thomson’s Lamp is dysfunctional. Synthese, 116(3):281–301,

1998.

[88] Stefan Monnier and David Haguenauer. Singleton types here, singleton types there, sin-

gleton types everywhere. In Programming Languages meets Program Verification (PLPV

’10), pages 1–8. ACM, 2010.

[89] Henrik Nilsson. Functional automatic differentiation with Dirac impulses. In International

Conference on Functional Programming (ICFP ’03), pages 153–164. ACM, 2003.

www.haskell.org

BIBLIOGRAPHY 136

[90] Henrik Nilsson. Dynamic optimization for functional reactive programming using gen-

eralized algebraic data types. In International Conference on Functional Programming

(ICFP ’05), pages 54–65. ACM, 2005.

[91] Henrik Nilsson. Type-based structural analysis for modular systems of equations. Simu-

lation News Europe, 19(1):17–28, 2009.

[92] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming,

continued. In Haskell Workshop (Haskell ’02), pages 51–64. ACM, 2002.

[93] Henrik Nilsson, John Peterson, and Paul Hudak. Functional hybrid modeling. In Practical

Aspects of Declarative Languages (PADL ’03), pages 376–390. Springer, 2003.

[94] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-Löf ’s

Type Theory. Oxford University Press, 1990.

[95] Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory.

PhD thesis, Chalmers University of Technology, 2007.

[96] Ulf Norell. Dependently typed programming in Agda. In Advanced Functional Program-

ming (AFP ’08), pages 230–266. Springer, 2009.

[97] Clemens Oertel. RatTracker: A Functional-Reactive Approach to Flexible Control of Be-

havioural Conditioning Experiments. PhD thesis, Wilhelm-Schickard-Institute for Com-

puter Science, University of Tübingen, 2006.

[98] André Pang, Don Stewart, Sean Seefried, and Manuel M. T. Chakravarty. Plugging

Haskell in. In Haskell Workshop (Haskell ’04), pages 10–21. ACM, 2004.

[99] Gergely Patai. Eventless reactivity from scratch. In Draft Proceedings of Implementation

and Application of Functional Languages (IFL ’09), pages 126–140, 2009.

[100] Gergely Patai. Efficient and compositional higher-order streams. In Functional and Con-

straint Logic Programming (WFLP ’10), pages 137–154. Springer, 2011.

[101] Ross Paterson. A new notation for arrows. In International Conference on Functional

Programming (ICFP ’01), pages 229–240. ACM, 2001.

[102] John Peterson, Paul Hudak, and Conal Elliott. Lambda in motion: Controlling robots

with Haskell. In Practical Aspects of Declarative Languages (PADL ’99), pages 91–105.

Springer, 1999.

[103] John Peterson, Paul Hudak, Alastair Reid, and Greg Hager. FVision: A declarative

language for visual tracking. In Practical Aspects of Declarative Languages (PADL ’01),

pages 304–321. Springer, 2001.

[104] Marc Pouzet. Lucid Synchrone, version 3: Tutorial and reference manual. Université

Paris-Sud, LRI, 2006. URL www.di.ens.fr/~pouzet/lucid-synchrone.

www.di.ens.fr/~pouzet/lucid-synchrone

BIBLIOGRAPHY 137

[105] Marc Pouzet. On combining synchronous and functional programming. Presentation

at Between Control and Software: Workshop in honor of Paul Caspi, 2007. URL

www.artist-embedded.org/artist/Programme,1140.html.

[106] Marc Pouzet and Pascal Raymond. Modular static scheduling of synchronous data-flow

networks: An efficient symbolic representation. Design Automation for Embedded Sys-

tems, 14(3):165–192, 2010.

[107] Arthur N. Prior. Past, Present and Future. Oxford University Press, 1967.

[108] G. Ramalingam and Thomas Reps. A categorized bibliography on incremental computa-

tion. In Principles of Programming Languages (POPL ’93), pages 502–510. ACM, 1993.

[109] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. Type

checking with open type functions. In International Conference on Functional Program-

ming (ICFP ’08), pages 51–62. ACM, 2008.

[110] Neil Sculthorpe and Henrik Nilsson. Optimisation of dynamic, hybrid signal function

networks. In Trends in Functional Programming (TFP ’08), pages 97–112. Intellect,

2009.

[111] Neil Sculthorpe and Henrik Nilsson. Safe functional reactive programming through depen-

dent types. In International Conference on Functional Programming (ICFP ’09), pages

23–34. ACM, 2009.

[112] Neil Sculthorpe and Henrik Nilsson. Keeping calm in the face of change: Towards opti-

misation of FRP by reasoning about change. Higher-Order and Symbolic Computation,

23(2):227–271, 2011. URL http://dx.doi.org/10.1007/s10990-011-9068-x.

[113] Sean Seefried, Manuel M. T. Chakravarty, and Gabriele Keller. Optimising embedded

DSLs using Template Haskell. In Generative Programming and Component Engineering

(GPCE ’04), pages 186–205. Springer, 2004.

[114] Tim Sheard. Type-level computation using narrowing in Ωmega. In Programming Lan-

guages meets Program Verification (PLPV ’06), pages 105–128, 2006.

[115] Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell. In Haskell

Workshop (Haskell ’02), pages 1–16. ACM, 2002.

[116] Tim Sheard, James Hook, and Nathan Linger. GADTs + extensible kinds = dependent

programming. Technical report, Portland State University, 2005.

[117] Thomas R. Shiple, Gérard Berry, and Hervé Touati. Constructive analysis of cyclic

circuits. In International Design and Testing Conference, pages 328–333. IEEE Computer

Society, 1996.

[118] Ben A. Sijtsma. On the productivity of recursive list definitions. Transactions on Pro-

gramming Languages and Systems, 11(4):633–649, 1989.

www.artist-embedded.org/artist/Programme,1140.html
http://dx.doi.org/10.1007/s10990-011-9068-x

BIBLIOGRAPHY 138

[119] Don Stewart. Dynamic Extension of Typed Functional Languages. PhD thesis, School of

Computer Science and Engineering, University of New South Wales, 2010.

[120] Jean-Pierre Talpin and David Nowak. A synchronous semantics of higher-order processes

for modeling reconfigurable reactive systems. In Foundations of Software Technology and

Theoretical Computer Science (FST & TCS ’98), pages 78–89. Springer, 1998.

[121] The GHC Team. The Glorious Glasgow Haskell Compilation System User’s Guide, Ver-

sion 7.0.3, 2011. URL www.haskell.org/ghc.

[122] Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,

second edition, 1999.

[123] James F. Thomson. Tasks and super-tasks. Analysis, 15(1):1–13, 1954.

[124] Yde Venema. Temporal logic. In The Blackwell Guide to Philosophical Logic, chapter 10,

pages 203–223. Blackwell, 2001.

[125] Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Suzmann. Out-

sideIn(X) modular type inference with local assumptions. Journal of Functional Program-

ming, 21(Special Issue 4–5):333–412, 2011.

[126] WilliamW. Wadge and Edward A. Ashcroft. Lucid, the Dataflow Programming Language.

Academic Press Professional, 1985.

[127] Zhanyong Wan and Paul Hudak. Functional reactive programming from first principles.

In Programming Language Design and Implementation (PLDI ’00), pages 242–252. ACM,

2000.

[128] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In International Confer-

ence on Functional Programming (ICFP ’01), pages 146–156. ACM, 2001.

[129] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In Practical Aspects

of Declarative Languages (PADL ’02), pages 155–172. Springer, 2002.

[130] Hongwei Xi. Dependent ML: An approach to practical programming with dependent

types. Journal of Functional Programming, 17(2):215–286, 2007.

[131] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Principles

of Programming Languages (POPL ’99), pages 214–227. ACM, 1999.

[132] Haiyang Zheng. Operational Semantics of Hybrid Systems. PhD thesis, EECS Depart-

ment, University of California, Berkeley, 2007.

www.haskell.org/ghc

Appendix A

Utility Functions

This appendix contains the utility functions used in this thesis that are not defined elsewhere.

These functions are defined in the syntax of AgdaFRP (Section 2.2), but in most cases trans-

lating them into Haskell and Agda is trivial. Consequently, these functions are also used in the

Haskell and Agda embeddings without repeating their definitions in Haskell and Agda syntax.

A few of these functions cannot easily be translated into Haskell, but those functions are not

used in the Haskell embedding.

Ideal real numbers, along with standard arithmetic and comparative operations on them,

are assumed rather than defined. In the Agda encoding of this thesis, real numbers and the

operations on them are postulated as axioms.

A.1 Combinators

First are several function combinators:

◦ : (B → C) → (A → B) → (A → C)

g ◦ f = λ a → g (f a)

const : A → B → A

const a = a

flip : (A → B → C) → B → A → C

flip f b a = f a b

result : (B → C) → (A → B) → (A → C)

result f g = f ◦ g

result2 : (C → D) → (A → B → C) → (A → B → D)

result2 f g a = f ◦ g a

Next are combinators over product types (many of which have lifted counterparts at the

reactive level of N-ary FRP):

curry : (A × B → C) → (A → B → C)

curry f a b = f (a, b)

uncurry : (A → B → C) → (A × B → C)

uncurry f (a, b) = f a b

fork : A → A × A

fork a = (a, a)

swap : A × B → B × A

swap (a, b) = (b, a)

139

APPENDIX A. UTILITY FUNCTIONS 140

fst : A × B → A

fst (a, b) = a

snd : A × B → B

snd (a, b) = b

first : (A → C) → A × B → C × B

first f (a, b) = (f a, b)

second : (B → C) → A × B → A × C

second f (a, b) = (a, f b)

A.2 Booleans

Logical negation is defined as follows:

not : Bool → Bool

not false = true

not true = false

A Boolean can be converted into a proposition:

isTrue : Bool → Set

isTrue true = True

isTrue false = False

A.3 Lists

The following list functions are standard:

map : (A → B) → List A → List B

map f [] = []

map f (a :: as) = f a :: map f as

reverse : List A → List A

reverse [] = []

reverse (a :: as) = reverse as ++ (a :: [])

++ : List A → List A → List A

[] ++ bs = bs

(a :: as) ++ bs = a :: (as ++ bs)

zipWith : (A → B → C) → List A → List B → List C

zipWith f (a :: as) (b :: bs) = f a b :: zipWith f as bs

zipWith f = []

dropWhile : (A → Bool) → List A → List A

dropWhile p [] = []

dropWhile p (a :: as) = if p a then dropWhile p as else a :: as

sum : List R → R

sum [] = 0

sum (x :: xs) = x + sum xs

A.4 Maybe

Several basic combinators over options types are required:

fromMaybe : A → Maybe A → A

fromMaybe a nothing = a

fromMaybe a (just b) = b

APPENDIX A. UTILITY FUNCTIONS 141

maybeMap : (A → B) → Maybe A → Maybe B

maybeMap f nothing = nothing

maybeMap f (just a) = just (f a)

maybeMap2 : (A → B → C) → Maybe A → Maybe B → Maybe C

maybeMap2 f nothing mb = nothing

maybeMap2 f (just a) mb = maybeMap (f a) mb

maybeMerge : (A → C) → (B → C) → (A → B → C) → Maybe A → Maybe B → Maybe C

maybeMerge fa fb fab nothing nothing = nothing

maybeMerge fa fb fab nothing (just b) = just (fb b)

maybeMerge fa fb fab (just a) nothing = just (fa a)

maybeMerge fa fb fab (just a) (just b) = just (fab a b)

maybeFilter : (A → Bool) → Maybe A → Maybe A

maybeFilter p nothing = nothing

maybeFilter p (just a) = if p a then just a else nothing

A.5 Intervals

A data type for time intervals is defined as follows:

data Interval : Set where

〈 , 〉 : Time → Time → Interval

〈 ,] : Time → Time → Interval

[, 〉 : Time → Time → Interval

[,] : Time → Time → Interval

Note that parentheses are reserved syntax in Agda, so angled brackets are used to denote open

intervals.

A proposition that expresses a time value being within an interval is defined as follows:

∈ : Time → Interval → Set

t ∈ 〈 t1, t2 〉 = (t1 < t) × (t < t2)

t ∈ 〈 t1, t2] = (t1 < t) × (t 6 t2)

t ∈ [t1, t2 〉 = (t1 6 t) × (t < t2)

t ∈ [t1, t2] = (t1 6 t) × (t 6 t2)

Finally, ConstantOver s i holds if the time-varying value s is constant over the interval i :

ConstantOver : (Time → A) → Interval → Set

ConstantOver s i = (t1 t2 : Time) → t1 ∈ i → t2 ∈ i → s t1 ≡ s t2

Appendix B

N-ary FRP Conceptual

Definitions

This appendix contains utility functions that operate on the conceptual model of N-ary FRP

(defined in Section 4.1). Additionally, many of the N-ary FRP primitives in Section 4.2 were

introduced without defining their semantics: this appendix contains those definitions. These

definitions make use of the utility functions in Appendix A.

B.1 Utility Functions

First are some functions on change lists and change prefixes. The time of the last change in a

change list is computed by summing its time deltas:

lastChangeTime : ChangeList A → Time

lastChangeTime = sum ◦ map fst

The prefix of a change list up to a time point (inclusive or exclusive) is given by:

takeIncl : Time → ChangeList A → ChangeList A

takeIncl [] = []

takeIncl t ((δ, a) :: δas) | t < δ = []

| t > δ = (δ, a) :: takeIncl (t − δ) δas

takeExcl : Time → ChangeList A → ChangeList A

takeExcl [] = []

takeExcl t ((δ, a) :: δas) | t 6 δ = []

| t > δ = (δ, a) :: takeExcl (t − δ) δas

Whether there is a change at a time point in a change list or change prefix is given by:

lookupCL : ChangeList A → Time → Maybe A

lookupCL [] = nothing

lookupCL ((δ, a) :: δas) t | t < δ = nothing

| t ≡ δ = just a

| t > δ = lookupCL δas (t − δ)

lookupCP : ChangePrefix A → Time → Maybe A

lookupCP cp t = lookupCL (cp t) t

142

APPENDIX B. N-ARY FRP CONCEPTUAL DEFINITIONS 143

Next are some functions over signals. The value of a Step signal at a time point is given by:

val : SigVec (S A) → Time → A

val (a0, cp) t = case reverse (cp t) of

[] → a0

(, a1) :: → a1

The value of a Step signal immediately prior to a time point (its left limit) is given by:

leftLimit : SigVec (S A) → T ime+ → A

leftLimit (a0, cp) t = case reverse (takeExcl t (cp t)) of

[] → a0

(, a1) :: → a1

Whether an event is occurring at a time point, and its value if so, is given by:

occ : SigVec (E A) → Time → Maybe A

occ (ma, cp) t | t ≡ 0 = ma

| t > 0 = lookupCP cp t

Finally, the first event occurrence in an Event signal, provided it occurs before a specified time

point (inclusive), is given by:

fstOcc : SigVec (E A) → Time → Maybe (Time × A)

fstOcc (just a,) = just (0, a)

fstOcc (nothing, cp) t = case cp t of

[] → nothing

δa :: → just δa

B.2 Lifting Functions

The lifting functions take a pure function from the host language and apply it pointwise to

a signal. Before defining those primitives, some pointwise mappings over change lists, change

prefixes and signals are defined as follows:

mapCL : (A → B) → ChangeList A → ChangeList B

mapCL = map ◦ second

mapCP : (A → B) → ChangePrefix A → ChangePrefix B

mapCP = result ◦ mapCL

mapC : (A → B) → SigVec (C A) → SigVec (C B)

mapC = result

mapE : (A → B) → SigVec (E A) → SigVec (E B)

mapE f (ma, cp) = (maybeMap f ma,mapCP f cp)

mapS : (A → B) → SigVec (S A) → SigVec (S B)

mapS f (a, cp) = (f a,mapCP f cp)

Sometimes it is necessary to map over two signals. In the case of Continuous signals, this

is straightforward:

mapC2 : (A → B → Z) → SigVec (C A) → SigVec (C B) → SigVec (C Z)

mapC2 f s1 s2 t = f (s1 t) (s2 t)

However, for Step and Event signals this is more complicated. When mapping over two Step

signals, the resultant signal should contain a change whenever there is a change in either

argument signal. Furthermore, that change needs to reflect the most recent value of the other

signal, even if that other signal has not changed at the same time (as will usually be the case).

This is defined as follows:

APPENDIX B. N-ARY FRP CONCEPTUAL DEFINITIONS 144

mapS2 : (A → B → Z) → SigVec (S A) → SigVec (S B) → SigVec (S Z)

mapS2 f (a, cpa) (b, cpb) = (f a b, λ t → mergeS a b (cpa t) (cpb t))

where

mergeS : A → B → ChangeList A → ChangeList B → ChangeList Z

mergeS a0 b0 [] δbs = mapCL (f a0) δbs

mergeS a0 b0 δas [] = mapCL (flip f b0) δas

mergeS a0 b0 ((δa, a1) :: δas) ((δb, b1) :: δbs)

| δa ≡ δb = (δa, f a1 b1) :: mergeS a1 b1 δas δbs

| δa < δb = (δa, f a1 b0) :: mergeS a1 b0 δas ((δb − δa, b1) :: δbs)

| δa > δb = (δb , f a0 b1) :: mergeS a0 b1 ((δa − δb, a1) :: δas) δbs

As discussed in Section 4.2.3, there are two ways to map over two Event signals: merg-

ing (keeping occurrences from both signals), or joining (only keeping temporally intersecting

occurrences):

mergeE2 : (A → Z) → (B → Z) → (A → B → Z) → SigVec (E A) → SigVec (E B) → SigVec (E Z)

mergeE2 fa fb fab (ma, cpa) (mb, cpb) = (maybeMerge fa fb fab ma mb, λ t → mergeCL (cpa t) (cpb t))

where

mergeCL : ChangeList A → ChangeList B → ChangeList Z

mergeCL [] δbs = mapCL fb δbs

mergeCL δas [] = mapCL fa δas

mergeCL ((δa, a) :: δas) ((δb, b) :: δbs) | δa ≡ δb = (δa, fab a b) :: mergeCL δas δbs

| δa < δb = (δa, fa a) :: mergeCL δas (((δb − δa), b) :: δbs)

| δa > δb = (δb, fb b) :: mergeCL (((δa − δb), a) :: δas) δbs

joinE2 : (A → B → Z) → SigVec (E A) → SigVec (E B) → SigVec (E Z)

joinE2 f (ma, cpa) (mb, cpb) = (maybeMap2 f ma mb, λ t → joinCL 0 (cpa t) (cpb t))

where

joinCL : Time → ChangeList A → ChangeList B → ChangeList Z

joinCL [] = []

joinCL [] = []

joinCL d ((δa, a) :: δas) ((δb, b) :: δbs) | δa ≡ δb = (d + δa, f a b) :: joinCL 0 δas δbs

| δa < δb = joinCL (d + δa) δas ((δb − δa, b) :: δbs)

| δa > δb = joinCL (d + δb) ((δa − δb, a) :: δas) δbs

The sampleWith lifting functions map over two signals of different kinds: a Continuous or

Step signal, and an Event signal. Corresponding mapping functions are defined as follows:

mapCE : (A → B → Z) → SigVec (C A) → SigVec (E B) → SigVec (E Z)

mapCE f s (mb, cp) = (maybeMap (f (s 0)) mb, λ t → mergeCE 0 (cp t))

where

mergeCE : Time → ChangeList B → ChangeList Z

mergeCE d [] = []

mergeCE d ((δ, b) :: δbs) = let d ′ = d + δ in (d ′, f (s d ′) b) :: mergeCE d ′ δbs

mapSE : (A → B → Z) → SigVec (S A) → SigVec (E B) → SigVec (E Z)

mapSE f s (mb, cp) = (maybeMap (f (val s 0)) mb, λ t → mergeSE 0 (cp t))

where

mergeSE : Time → ChangeList B → ChangeList Z

mergeSE d [] = []

mergeSE d ((δ, b) :: δbs) = let d ′ = d + δ in (d ′, f (val s d ′) b) :: mergeSE d ′ δbs

Using these mappings, defining the semantics of the lifting functions is trivial:

liftC : (A → B) → SF (C A) (C B)

liftC f ≈ mapC f

liftS : (A → B) → SF (S A) (S B)

liftS f ≈ mapS f

liftE : (A → B) → SF (E A) (E B)

liftE f ≈ mapE f

APPENDIX B. N-ARY FRP CONCEPTUAL DEFINITIONS 145

liftC2 : (A → B → Z) → SF (C A,C B) (C Z)

liftC2 f ≈ uncurry (mapC2 f)

liftS2 : (A → B → Z) → SF (S A, S B) (S Z)

liftS2 f ≈ uncurry (mapS2 f)

merge : (A → Z) → (B → Z) → (A → B → Z) → SF (E A,E B) (E Z)

merge fa fb fab ≈ uncurry (mergeE2 fa fb fab)

join : (A → B → Z) → SF (E A,E B) (E Z)

join f ≈ uncurry (joinE2 f)

sampleWithC : (A → B → Z) → SF (C A,E B) (E Z)

sampleWithC f ≈ uncurry (mapCE f)

sampleWithS : (A → B → Z) → SF (S A,E B) (E Z)

sampleWithS f ≈ uncurry (mapSE f)

B.3 Delaying Signals

The definition of delayC was given in Section 4.2.4. Thus this section only considers delayE

and delayS .

Delaying a change list is just a matter of increasing the first time delta:

delayCL : Time → ChangeList A → ChangeList A

delayCL d [] = []

delayCL d ((δ, a) :: δas) = (d + δ, a) :: δas

A useful variant of this function (optionally) takes a value as an additional argument and inserts

it as a change at the delay time in the resultant change list:

delayCLinit : Maybe A → T ime+ → ChangeList A → ChangeList A

delayCLinit (just a) d δas = (d , a) :: δas

delayCLinit nothing d δas = delayCL d δas

Delaying a change prefix is achieved by reducing the sample time by the delay period (d), and

then delaying the resultant change list by that amount:

delayCP : Maybe A → T ime+ → ChangePrefix A → ChangePrefix A

delayCP ma d cp t | t < d = []

| t > d = delayCLinit ma d (cp (t − d))

Defining the delay signal functions is now straightforward:

delayE : T ime+ → SF (E A) (E A)

delayE d ≈ λ (ma, cp) → (nothing, delayCP ma d cp)

delayS : T ime+ → A → SF (S A) (S A)

delayS d a0 ≈ λ (a1, cp) → (a0, delayCP (just a1) d cp)

B.4 Filtering Event Signals

As an aid to filtering event signals, a function to filter change lists is defined as follows:

filterCL : (A → Bool) → ChangeList A → ChangeList A

filterCL p [] = []

filterCL p ((δ, a) :: δas) = if p a

then (δ, a) :: filterCL p δas

else delayCL δ (filterCL p δas)

APPENDIX B. N-ARY FRP CONCEPTUAL DEFINITIONS 146

Note that the time delta that follows any eliminated event occurrences must be increased (using

delayCL). The definition of filterE is then as follows:

filterE : (A → Bool) → SF (E A) (E A)

filterE p ≈ λ (ma, cp) → (maybeFilter p ma, result (filterCL p) cp)

B.5 Dynamic Combinators

The conceptual definitions of the switch and freeze combinators are fairly involved. As an aid

to defining them, several auxiliary notions will first be introduced.

B.5.1 Advancing Signals

Advancing a signal is the opposite of delaying a signal (some authors call it ageing the signal).

That is, where delaying a signal looks into the past, advancing a signal looks into the future.

Intuitively, advancing a signal shifts the local time frame of a signal forwards by a given amount

of time (d), discarding everything before time d . This is acausal, and so wouldn’t make sense as

a signal function. However, advance is only used as a conceptual utility by switch, connecting

a signal from outside the switching combinator to the local time of the residual signal function

(because the time frame of the external network will be ahead of the local time frame of the

residual signal function).

First, a change list can be advanced as follows:

advanceCL : Time → ChangeList A → ChangeList A

advanceCL d [] = []

advanceCL d ((δ, a) :: δas) | d < δ = (δ − d , a) :: δas

| d > δ = advanceCL (d − δ) δas

Advancing a change prefix is achieved by sampling the prefix in the future, then advancing the

resultant change list:

advanceCP : Time → ChangePrefix A → ChangePrefix A

advanceCP d cp t = advanceCL d (cp (t + d))

Advancing a signal vector is then defined as follows:

advance : {as : SVDesc} → Time → SigVec as → SigVec as

advance {C } d s = λ t → s (t + d)

advance {S } d s = (valS s d , advanceCP d (snd s))

advance {E } d s = (occ s d , advanceCP d (snd s))

advance { , } d (s1, s2) = (advance d s1, advance d s2)

B.5.2 Splicing

Switching combinators switch-out signal functions at certain time points, and replace them

with newly switched-in signal functions. To describe this conceptually, a notion of temporally

composing signals is needed. This is referred to as splicing signals.

First, as an aid to computing the earlier half of a splice, an auxiliary function is needed that

takes a change prefix up to (yet excluding) a time point. For convenience, this function also

returns the time delta between the time point and the last change in the resultant change list:

APPENDIX B. N-ARY FRP CONCEPTUAL DEFINITIONS 147

takeExclEnd : ChangePrefix A → T ime+ → ChangeList A × ∆t

takeExclEnd cp t = let δas = takeExcl t (cp t) in (δas, t − lastChangeTime δas)

Splicing signal vectors is then defined as follows:

spliceC : SigVec (C A) → SigVec (C A) → Time → SigVec (C A)

spliceC s1 s2 tx t | t < tx = s1 t

| t > tx = s2 (t − tx)

spliceS : SigVec (S A) → SigVec (S A) → Time → SigVec (S A)

spliceS (a1, cp1) (a2, cp2) tx
| tx ≡ 0 = (a2, cp2)

| tx > 0 = (a1, λ t → if t < tx
then cp1 t

else let (δas, δ) = takeExclEnd cp1 tx
in δas ++ (δ, a2) :: cp2 (t − tx))

spliceE : SigVec (E A) → SigVec (E A) → Time → SigVec (E A)

spliceE (ma1, cp1) (ma2, cp2) tx
| tx ≡ 0 = (ma2, cp2)

| tx > 0 = (ma1, λ t → if t < tx
then cp1 t

else let (δas, δ) = takeExclEnd cp1 tx
in δas ++ delayCLinit ma2 δ (cp2 (t − tx)))

splice : {as : SVDesc} → SigVec as → SigVec as → Time → SigVec as

splice {C } s1 s2 t = spliceC s1 s2 t

splice {S } s1 s2 t = spliceS s1 s2 t

splice {E } s1 s2 t = spliceE s1 s2 t

splice { , } (sa1, sb1) (sa2, sb2) t = (splice sa1 sa2 t , splice sb1 sb2 t)

The time argument is the time point at which the splice should occur. Essentially, splice s1 s2 t

takes the prefix of s1 over the interval [0, t) and appends it temporally in front of s2.

B.5.3 Assuming the Sample Time

The final utility is a function that allows a signal vector to depend on the time at which it is

sampled, even though that sample time is not yet known:

withTime : {as : SVDesc} → (SampleTime → SigVec as) → SigVec as

withTime {C } f = λ t → f t t

withTime {E } f = (fst (f 0), λ t → snd (f t) t)

withTime {S } f = (fst (f 0), λ t → snd (f t) t)

withTime { , } f = (withTime (fst ◦ f),withTime (snd ◦ f))

This will be useful when defining switch because the resultant signal vector of switch depends

on whether an event has occurred yet, but that cannot be determined unless the sample time

is known.

B.5.4 Switch

The switch combinator can now be defined as follows:

switch : SF as (bs,E A) → (A → SF as bs) → SF as bs

switch sf f ≈ λ sa → let (sb, se) = sf sa
in withTime (λ t → case fstOcc se t of

nothing → sb
just (te, e) → splice sb ((f e) (advance te sa)) te)

APPENDIX B. N-ARY FRP CONCEPTUAL DEFINITIONS 148

If no event has occurred then the output is the subordinate signal function’s output (sb). If

an event has occurred, then its value is used to generate a residual signal function (f e). The

input signal vector is then advanced by the event time (te), and the residual signal function

applied to it. Finally, sb and the newly generated signal vector are spliced together.

B.5.5 Freeze

The definition of freeze is somewhat simpler:

freeze : SF as bs → SF as (bs,C (SF as bs))

freeze sf ≈ λ s1 → (sf s1, λ t → (λ s2 → advance t (sf (splice s1 s2 t))))

B.6 Miscellaneous Signal Functions

The fromS and dfromS signal functions are straightforwardly defined using val and leftLimit :

fromS : SF (S A) (C A)

fromS ≈ val

dfromS : A → SF (S A) (C A)

dfromS a ≈ λ s t → if t > 0 then leftLimit s t else a

The integral of a Step signal is defined exactly using the rectangle rule:

integralS : SF (S R) (C R)

integralS ≈ λ (a0, cp) t → let δas = cp t

δs = map fst δas ++ (t − lastChangeTime δas) :: []

as = a0 :: map snd δas

in sum (zipWith (∗) δs as)

B.7 Rising Edge Detection (when)

The following conceptual definition of when is inspired by Wan and Hudak’s definition [127].

The key difference, beside an adaptation to the N -ary FRP model, is a direct characterisation

of the conditions required for a temporal predicate to be sufficiently well-behaved to make the

definition of when meaningful. In Wan and Hudak’s definition, this is indirect from the lack

of a solution satisfying their stated semantic conditions. Intuitively, a temporal predicate is

well-behaved if the list of positive transitions (transitions from the predicate not holding to the

predicate holding) over any given interval is finite.

First, a number of auxiliary temporal predicates are required. Over requires a temporal

predicate to hold over an interval:

Over : TPred → Interval → Set

Over ϕ i = ∀ t → t ∈ i → ϕ t

PIvl and FIvl require there to exist non-empty open intervals to the left or right (respec-

tively) of the time point, over which ϕ holds:

PIvl : TPred → TPred

PIvl ϕ t = P (λ t0 → Over ϕ 〈 t0, t 〉) t

FIvl : TPred → TPred

FIvl ϕ t = F (λ t1 → Over ϕ 〈 t , t1 〉) t

APPENDIX B. N-ARY FRP CONCEPTUAL DEFINITIONS 149

In a similar vein, Neighbourhood ϕ holds if there exists a neighbourhood around the time

point over which ϕ holds:

Neighbourhood : TPred → TPred

Neighbourhood ϕ = PIvl ϕ ∧ ϕ ∧ FIvl ϕ

Transitions can now be characterised as temporal predicates:

PosTrans : TPred → TPred

PosTrans ϕ = PIvl (¬ ϕ) ∧ ϕ ∧ FIvl ϕ

NegTrans : TPred → TPred

NegTrans ϕ = PIvl ϕ ∧ FIvl (¬ ϕ)

NoTrans : TPred → TPred

NoTrans ϕ = Neighbourhood ϕ ∨ Neighbourhood (¬ ϕ)

PosTransL : TPred → TPred

PosTransL ϕ = PIvl (¬ ϕ) ∧ ϕ

PosTrans ϕ t holds if ϕ has a positive transition at the time t , NegTrans ϕ t holds if ϕ has

a negative transition at point t , and NoTrans ϕ t holds if ϕ has no transition at point t .

Note that NegTrans is not concerned with whether ϕ holds at point t , whereas PosTrans is.

This is an due to the N-ary FRP model only permitting events to occur at time points, not

immediately afterwards (see Section 9.1). Because of this limitation, it is necessary to rule

out positive transitions where the predicate holds immediately after, but not at, a time point.

Finally, PosTransL is the left-biased version of PosTrans that only considers an interval to the

left of t .

A predicate that holds if ϕ is well-behaved on an open interval (t0, t1) can now be defined:

WellBehaved : TPred → Time → Time → Set

WellBehaved ϕ t0 t1 = finite {τ | τ ∈ 〈 t0, t1 〉,PosTrans ϕ τ }

× Over (PosTrans ϕ ∨ NegTrans ϕ ∨ NoTrans ϕ) 〈 t0, t1 〉

The finiteness condition rules out the temporal predicate oscillating infinitely often over a finite

interval. The second part says that it must be possible to characterise every interior point either

as a positive transition, a negative transition, or the absence of a transition. This rules out

“spikes”: points where the truth of the predicate differs from its truth in all neighbourhoods of

that point.

The finite ascending list of time points of positive transitions for a temporal predicate ϕ

over an interval (0, t] can now be defined:

poccs : TPred → Time → List Time

poccs ϕ t | WellBehaved ϕ 0 t = [τ | τ ∈ 〈 0, t 〉,PosTrans ϕ τ] ++ [t | PosTransL ϕ t]

Note that the use of the proposition WellBehaved ϕ 0 t in the pattern guard is informal

notation expressing that poccs is partial. Thus poccs is only defined for well-behaved temporal

predicates.

Finally, when is defined using poccs . Thus when is undefined if applied to an ill-behaved

predicate and signal composition:

when : (A → Bool) → SF (C A) (E A)

when p ≈ λ s → (nothing,whenAux s)

where

whenAux : (Time → A) → ChangePrefix A

whenAux s t = let ts = poccs (isTrue ◦ p ◦ s) t

in zipWith (λ t1 t0 → (t1 − t0, s t1)) ts (0 :: ts)

Appendix C

Source Code for Embeddings of

N-ary FRP

Chapters 5 and 7 defined embedded implementations of N-ary FRP in Agda and Haskell. When

describing those implementations, a substantial amount of code was omitted as it was either

uninteresting, verbose, or similar to other code. This appendix contains that omitted code.

Note that standard library code is not included, though many of the utility functions used

can be found in Appendix A. The complete source code is available in the online archive [1].

C.1 The Delay Primitives

The delay family of primitive signal functions was omitted from the Agda embedding in

Section 5.2 because their definitions are substantially more extensive than the other primi-

tives. This section contains those definitions. The encodings of the delay primitives in the

other embeddings in this thesis are not given, but they are available in the online archive [1].

As discussed in Section 5.4, the basic idea is to put the input samples in a queue, and then

dequeue each sample after the delay period has passed. A queue module that provides the

following API is assumed:

Queue : Set → Set

emptyQueue : ∀ {A} → Queue A

enQueue : ∀ {A} → A → Queue A → Queue A

deQueue : ∀ {A} → Queue A → Maybe (Queue A × A)

deQueueIf : ∀ {A} → (A → Bool) → Queue A → Maybe (Queue A × A)

deQueueWhileLast : ∀ {A} → (A → Bool) → Queue A → Maybe (Queue A × A)

The deQueueIf function only dequeues the head of the queue if the predicate holds for the head

element. The deQueueWhileLast function dequeues elements while the predicate holds, and

returns the last such element (if any). The other functions are standard.

Using these functions, the delay signal functions are defined as follows:

private CurrentTime = Time

ReleaseTime = Time

DelayQueue : Set → Set

DelayQueue A = Queue (ReleaseTime × A)

150

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 151

ready : {A : Set } → CurrentTime → ReleaseTime × A → Bool

ready ct (rt ,) = ct > rt

delayC : ∀ {A} → T ime+ → (Time → A) → SF (C A) (C A)

delayC {A} d f = mkSF delayAuxC (λ a0 → ((0, nothing, enQueueC 0 a0 emptyQueue), f 0))

where

-- The ”Maybe A” tells us whether we are still in the delay period (nothing)

-- or not (just a, where a is the most recent output sample)

DelayStateC = CurrentTime × Maybe A × DelayQueue A

enQueueC : CurrentTime → A → DelayQueue A → DelayQueue A

enQueueC t a = enQueue (t + d , a)

deQueueC : CurrentTime → DelayQueue A → Maybe (DelayQueue A × ReleaseTime × A)

deQueueC t = deQueueWhileLast (ready t)

deQueueCstate : CurrentTime → Maybe A → DelayQueue A → Maybe A × DelayQueue A × A

deQueueCstate t st q with deQueueC t q

deQueueCstate t st q | just (q ′, (, a2)) = (just a2, q ′, a2)

deQueueCstate t nothing q | nothing = (nothing, q, f t)

deQueueCstate t (just a1) q | nothing = (just a1, q, a1)

delayAuxTimeC : CurrentTime → Maybe A → DelayQueue A → A → DelayStateC × A

delayAuxTimeC t ma1 q a with deQueueCstate t ma1 q

... | (ma2, q ′, a2) = ((t ,ma2, enQueueC t a q ′), a2)

delayAuxC : ∆t → DelayStateC → A → DelayStateC × A

delayAuxC δ (t1,ma1, q) = delayAuxTimeC (δ + t1) ma1 q

delayS : ∀ {A} → T ime+ → A → SF (S A) (S A)

delayS {A} d a0 = mkSF delayAuxS (λ a1 → ((0, a0, enQueueS 0 a1 emptyQueue), a0))

where

DelayStateS = CurrentTime × A × DelayQueue A

enQueueS : CurrentTime → A → DelayQueue A → DelayQueue A

enQueueS t a = enQueue (t + d , a)

deQueueS : CurrentTime → A → DelayQueue A → DelayQueue A × A

deQueueS t a1 q with deQueueWhileLast (ready t) q

... | nothing = (q, a1)

... | just (q ′, (, a2)) = (q ′, a2)

delayAuxTimeS : CurrentTime → A → DelayQueue A → A → DelayStateS × A

delayAuxTimeS t a1 q a with deQueueS t a1 q

... | (q ′, a2) = ((t , a2, enQueueS t a q ′), a2)

delayAuxS : ∆t → DelayStateS → A → DelayStateS × A

delayAuxS δ (t1, a1, q) = delayAuxTimeS (δ + t1) a1 q

delayE : ∀ {A} → T ime+ → SF (E A) (E A)

delayE {A} d = mkSF delayAuxE (λ e → ((0, enQueueE 0 e emptyQueue),noEvent))

where

DelayStateE = CurrentTime × DelayQueue A

Event = Maybe

enQueueE : CurrentTime → Event A → DelayQueue A → DelayQueue A

enQueueE t nothing = id

enQueueE t (just a) = enQueue (t + d , a)

deQueueE : CurrentTime → DelayQueue A → DelayQueue A × Event A

deQueueE t q with deQueueIf (ready t) q

... | nothing = (q,noEvent)

... | just (q ′, (, a)) = (q ′, event a)

delayAuxTimeE : CurrentTime → DelayQueue A → Event A → DelayStateE × Event A

delayAuxTimeE t q e with deQueueE t q

... | (q ′, e) = ((t , enQueueE t e q ′), e)

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 152

delayAuxE : ∆t → DelayStateE → Event A → DelayStateE × Event A

delayAuxE δ (t1, q) = delayAuxTimeE (δ + t1) q

C.2 Haskell Embedding of N-ary FRP

In Section 5.3 much of the code for the Haskell embedding of N -ary FRP was omitted as it is

very similar to the Agda code. The omitted code is listed in this section.

data Node :: ∗ → ∗ → ∗ where

Node :: (Dt → q → Sample as → (q,Sample bs))→ q → Node as bs

stepNode :: Dt → Node as bs → Sample as → (Node as bs,Sample bs)

stepNode dt (Node f q) sa = first (Node f) (f dt q sa)

data AtomicRouter :: ∗ → ∗ → ∗ where

SFId :: AtomicRouter as as

Fst :: AtomicRouter (as, bs) as

Snd :: AtomicRouter (as, bs) bs

stepRouter :: AtomicRouter as bs → Sample as → Sample bs

stepRouter SFId sa = sa

stepRouter Fst (sa1 ,) = sa1

stepRouter Snd (, sa2) = sa2

data SF :: ∗ → ∗ → ∗ where

Prim :: (Sample as → (Node as bs,Sample bs))→ SF as bs

ARouter :: AtomicRouter as bs → SF as bs

Seq :: SF as bs → SF bs cs → SF as cs

Fan :: SF as bs → SF as cs → SF as (bs, cs)

Switch :: SF as (bs,E e)→ (e → SF as bs) → SF as bs

Freeze :: SF as bs → SF as (bs,C (SF as bs))

data SF ′ :: ∗ → ∗ → ∗ where

Prim′ :: Node as bs → SF ′ as bs

ARouter′ :: AtomicRouter as bs → SF ′ as bs

Seq′ :: SF ′ as bs → SF ′ bs cs → SF ′ as cs

Fan′ :: SF ′ as bs → SF ′ as cs → SF ′ as (bs, cs)

Switch′ :: SF ′ as (bs,E e)→ (e → SF as bs)→ SF ′ as bs

Freeze′ :: SF ′ as bs → SF ′ as (bs,C (SF as bs))

step0 :: SF as bs → Sample as → (SF ′ as bs,Sample bs)

step0 (Prim f) sa = first Prim′ (f sa)

step0 (ARouter r) sa = (ARouter′ r , stepRouter r sa)

step0 (Seq sf1 sf2) sa = let (sf1 ′, sb) = step0 sf1 sa

(sf2 ′, sc) = step0 sf2 sb

in (Seq′ sf1 ′ sf2 ′, sc)

step0 (Fan sf1 sf2) sa = let (sf1 ′, sb) = step0 sf1 sa

(sf2 ′, sc) = step0 sf2 sa

in (Fan′ sf1 ′ sf2 ′, (sb, sc))

step0 (Switch sf f) sa = case step0 sf sa of

(sf ′, (sb,Nothing))→ (Switch′ sf ′ f , sb)

(, (, Just e)) → step0 (f e) sa

step0 (Freeze sf) sa = let (sf ′, sb) = step0 sf sa

in (Freeze′ sf ′, (sb, sf))

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 153

step′ :: Dt → SF ′ as bs → Sample as → (SF ′ as bs,Sample bs)

step′ dt (Prim′ n) sa = first Prim′ (stepNode dt n sa)

step′ dt (ARouter′ r) sa = (ARouter′ r , stepRouter r sa)

step′ dt (Seq′ sf1 sf2) sa = let (sf1 ′, sb) = step′ dt sf1 sa

(sf2 ′, sc) = step′ dt sf2 sb

in (Seq′ sf1 ′ sf2 ′, sc)

step′ dt (Fan′ sf1 sf2) sa = let (sf1 ′, sb) = step′ dt sf1 sa

(sf2 ′, sc) = step′ dt sf2 sa

in (Fan′ sf1 ′ sf2 ′, (sb, sc))

step′ dt (Switch′ sf f) sa = case step′ dt sf sa of

(sf ′, (sb,Nothing))→ (Switch′ sf ′ f , sb)

(, (, Just e)) → step0 (f e) sa

step′ dt (Freeze′ sf) sa = let (sf ′, sb) = step′ dt sf sa

in (Freeze′ sf ′, (sb, freezeSF dt sf))

where

freezeSF :: Dt → SF ′ as bs → SF as bs

freezeSF dt (Prim′ n) = Prim (stepNode dt n)

freezeSF dt (ARouter′ r) = ARouter r

freezeSF dt (Seq′ sf1 sf2) = Seq (freezeSF dt sf1) (freezeSF dt sf2)

freezeSF dt (Fan′ sf1 sf2) = Fan (freezeSF dt sf1) (freezeSF dt sf2)

freezeSF dt (Switch′ sf f) = Switch (freezeSF dt sf) f

freezeSF dt (Freeze′ sf) = Freeze (freezeSF dt sf)

mkSF :: (Dt → q → Sample as → (q,Sample bs))→ (Sample as → (q,Sample bs))→ SF as bs

mkSF f g = Prim (first (Node f).g)

mkSFsource :: (Dt → q → (q,Sample bs))→ q → Sample bs → SF as bs

mkSFsource f q sb = mkSF (λdt q ′ → f dt q ′) (const (q, sb))

mkSFtimeless :: (q → Sample as → (q,Sample bs))→ q → SF as bs

mkSFtimeless f q = mkSF (const f) (f q)

mkSFstateless :: (Sample as → Sample bs)→ SF as bs

mkSFstateless f = mkSFtimeless (λ sa → ((), f sa)) ()

mkSFchangeless :: Sample bs → SF as bs

mkSFchangeless sb = mkSFstateless (const sb)

noEvent :: Sample (E a)

noEvent = Nothing

event :: a → Sample (E a)

event = Just

identity :: SF as as

identity = ARouter SFId

sfFst :: SF (as, bs) as

sfFst = ARouter Fst

sfSnd :: SF (as, bs) bs

sfSnd = ARouter Snd

(≫) :: SF as bs → SF bs cs → SF as cs

(≫) = Seq

(&&&) :: SF as bs → SF as cs → SF as (bs, cs)

(&&&) = Fan

switch :: SF as (bs,E e)→ (e → SF as bs)→ SF as bs

switch = Switch

freeze :: SF as bs → SF as (bs,C (SF as bs))

freeze = Freeze

constantS :: a → SF as (S a)

constantS = mkSFchangeless

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 154

never :: SF as (E a)

never = mkSFchangeless noEvent

now :: SF as (E ())

now = mkSFsource (λ → ((),noEvent)) () (event ())

notYet :: SF (E a) (E a)

notYet = mkSF (λ → curry id) (const ((),noEvent))

filterE :: (a → Bool)→ SF (E a) (E a)

filterE p = mkSFstateless (maybeFilter p)

hold :: a → SF (E a) (S a)

hold = mkSFtimeless (λq → fork .fromMaybe q)

edge :: SF (S Bool) (E ())

edge = mkSFtimeless (λq i → (i , (if i && not q then event () else noEvent))) True

when :: (a → Bool)→ SF (C a) (E a)

when p = mkSFtimeless (λq i → (p i , (if p i && not q then event i else noEvent))) True

type IntegralState = (Double,Double)

integrateRectangle :: Dt → IntegralState → Double → (IntegralState,Double)

integrateRectangle dt (tot , x1) x2 = let tot ′ = tot + (dt ∗ x1)

in ((tot ′, x2), tot ′)

integrateTrapezium :: Dt → IntegralState → Double → (IntegralState,Double)

integrateTrapezium dt (tot , x1) x2 = let tot ′ = tot + (dt ∗ (x1 + x2) / 2)

in ((tot ′, x2), tot ′)

integralS :: SF (S Double) (C Double)

integralS = mkSF integrateRectangle (λx0 → ((0, x0), 0))

integralC :: SF (C Double) (C Double)

integralC = mkSF integrateTrapezium (λx0 → ((0, x0), 0))

liftC :: (a → b)→ SF (C a) (C b)

liftC = mkSFstateless

liftS :: (a → b)→ SF (S a) (S b)

liftS = mkSFstateless

liftE :: (a → b)→ SF (E a) (E b)

liftE = mkSFstateless.fmap

liftC2 :: (a → b → z)→ SF (C a,C b) (C z)

liftC2 = mkSFstateless.uncurry

liftS2 :: (a → b → z)→ SF (S a,S b) (S z)

liftS2 = mkSFstateless.uncurry

merge :: (a → z)→ (b → z)→ (a → b → z)→ SF (E a,E b) (E z)

merge fa fb fab = mkSFstateless (uncurry (maybeMerge fa fb fab))

join :: (a → b → z)→ SF (E a,E b) (E z)

join = mkSFstateless.uncurry .liftM2

sampleWithC :: (a → b → z)→ SF (C a,E b) (E z)

sampleWithC f = mkSFstateless (uncurry (fmap.f))

sampleWithS :: (a → b → z)→ SF (S a,E b) (E z)

sampleWithS f = mkSFstateless (uncurry (fmap.f))

fromS :: SF (S a) (C a)

fromS = mkSFstateless id

dfromS :: a → SF (S a) (C a)

dfromS = mkSFtimeless (flip (,))

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 155

C.3 Agda Embedding of N-ary FRP with Feedback

This section contains the source code for the Agda embedding of N-ary FRP with Feedback

(Section 7.5). Code that is unmodified from the embedding in Section 5.2 is not repeated.

data Node (as bs : SVDesc) : Dec → Set where

cnode : ∀ {Q } → (∆t → Q → Sample as → Q × Sample bs) → Q → Node as bs cau

dnode : ∀ {Q } → (∆t → Q → (Sample as → Q) × Sample bs) → Q → Node as bs dec

stepNode : ∀ {as bs d } → ∆t → Node as bs d → Sample as → Node as bs d × Sample bs

stepNode δ (cnode f q) sa = first (cnode f) (f δ q sa)

stepNode δ (dnode f q) sa = first (λ g → dnode f (g sa)) (f δ q)

dstepNode : ∀ {as bs } → ∆t → Node as bs dec → (Sample as → Node as bs dec) × Sample bs

dstepNode δ (dnode f q) = first (λ g sa → dnode f (g sa)) (f δ q)

data SF : SVDesc → SVDesc → Dec → Set where

cprim : ∀ {as bs } → (Sample as → Node as bs cau × Sample bs) → SF as bs cau

dprim : ∀ {as bs } → (Sample as → Node as bs dec) → Sample bs → SF as bs dec

arouter : ∀ {as bs } → AtomicRouter as bs → SF as bs cau

seq : ∀ {d1 d2 as bs cs } → SF as bs d1 → SF bs cs d2 → SF as cs (d1 ∨ d2)

fan : ∀ {d1 d2 as bs cs } → SF as bs d1 → SF as cs d2 → SF as (bs, cs) (d1 ∧ d2)

rswitcher : ∀ {d1 d2 as bs A} → SF as (bs,E A) d1 → (A → SF as (bs,E A) d2) → SF as bs (d1 ∧ d2)

freezer : ∀ {d as bs } → SF as bs d → SF as (bs,C (SF as bs d)) d

looper : ∀ {d as bs cs } → SF (as, cs) bs d → SF bs cs dec → SF as bs d

weakener : ∀ {d as bs } → SF as bs d → SF as bs cau

data SF ′ : SVDesc → SVDesc → Dec → Set where

prim : ∀ {d as bs } → Node as bs d → SF ′ as bs d

arouter : ∀ {as bs } → AtomicRouter as bs → SF ′ as bs cau

seq : ∀ {d1 d2 as bs cs } → SF ′ as bs d1 → SF ′ bs cs d2 → SF ′ as cs (d1 ∨ d2)

fan : ∀ {d1 d2 as bs cs } → SF ′ as bs d1 → SF ′ as cs d2 → SF ′ as (bs, cs) (d1 ∧ d2)

rswitcher : ∀ {d1 d2 as bs A} → SF ′ as (bs,E A) d1 → (A → SF as (bs,E A) d2) → SF ′ as bs (d1 ∧ d2)

freezer : ∀ {d as bs } → SF ′ as bs d → SF ′ as (bs,C (SF as bs d)) d

looper : ∀ {d as bs cs } → SF ′ (as, cs) bs d → SF ′ bs cs dec → SF ′ as bs d

weakener : ∀ {d as bs } → SF ′ as bs d → SF ′ as bs cau

weakenSwitch : ∀ {as bs } → (d1 d2 : Dec) → SF ′ as bs (d2 ∧ d2) → SF ′ as bs (d1 ∧ d2)

weakenSwitch cau = weakener

weakenSwitch dec cau = id

weakenSwitch dec dec = id

mutual

step0 : ∀ {d as bs } → SF as bs d → Sample as → SF ′ as bs d × Sample bs

step0 (cprim f) sa = first prim (f sa)

step0 (dprim f sb) sa = (prim (f sa), sb)

step0 (arouter r) sa = (arouter r , stepARouter r sa)

step0 (seq sf 1 sf 2) sa with step0 sf 1 sa

... | (sf ′1, sb) with step0 sf 2 sb

... | (sf ′2, sc) = (seq sf ′1 sf ′2, sc)

step0 (fan sf 1 sf 2) sa with step0 sf 1 sa | step0 sf 2 sa

... | (sf ′1, sb) | (sf
′

2, sc) = (fan sf ′1 sf ′2, (sb, sc))

step0 (rswitcher {d1} {d2} sf f) sa with step0 sf sa

... | (sf ′, (sb, nothing)) = (rswitcher sf ′ f , sb)

... | (, (, just e)) with step0 (f e) sa

... | (sf ′, (sb,)) = (weakenSwitch d1 d2 (rswitcher sf ′ f), sb)

step0 (freezer sf) sa with step0 sf sa

... | (sf ′, sb) = (freezer sf ′, (sb, sf))

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 156

step0 (looper sff sfb) sa with dstep0 sfb

... | (g, sc) with step0 sff (sa, sc)

... | (sff ′, sb) = (looper sff ′ (g sb), sb)

step0 (weakener sf) sa = first weakener (step0 sf sa)

dstep0 : ∀ {as bs } → SF as bs dec → (Sample as → SF ′ as bs dec) × Sample bs

dstep0 sf = dstepAux0 sf refl

dstepAux0 : ∀ {d as bs } → SF as bs d → d ≡ dec → (Sample as → SF ′ as bs dec) × Sample bs

dstepAux0 (cprim f) ()

dstepAux0 (dprim f sb) refl = (prim ◦ f , sb)

dstepAux0 (arouter r) ()

dstepAux0 (seq {dec} sf 1 sf 2) refl with dstep0 sf 1
... | (g, sb) with step0 sf 2 sb

... | (sf ′2, sc) = ((λ sa → seq (g sa) sf ′2), sc)

dstepAux0 (seq {cau} {.dec} {as } {bs } {cs } sf 1 sf 2) refl with dstep0 sf 2
... | (g, sc) = (aux , sc)

where aux : Sample as → SF ′ as cs dec

aux sa with step0 sf 1 sa

... | (sf ′1, sb) = seq sf ′1 (g sb)

dstepAux0 (fan {cau} sf 1 sf 2) ()

dstepAux0 (fan {dec} sf 1 sf 2) refl with dstep0 sf 1 | dstep0 sf 2
... | (g1, sb) | (g2, sc) = ((λ sa → fan (g1 sa) (g2 sa)), (sb, sc))

dstepAux0 (rswitcher {cau} sf f) ()

dstepAux0 (rswitcher {dec} sf f) refl with dstep0 sf

... | (g, (sb, nothing)) = ((λ sa → rswitcher (g sa) f), sb)

... | (, (, just e)) with dstep0 (f e)

... | (g, (sb,)) = ((λ sa → rswitcher (g sa) f), sb)

dstepAux0 (freezer sf) refl with dstep0 sf

... | (g, sb) = (freezer ◦ g, (sb, sf))

dstepAux0 (looper sff sfb) refl with dstep0 sff

... | (g, sb) with step0 sfb sb

... | (sfb′, sc) = ((λ sa → looper (g (sa, sc)) sfb′), sb)

dstepAux0 (weakener sf) ()

freezeSF : ∀ {d as bs } → ∆t → SF ′ as bs d → SF as bs d

freezeSF δ (arouter r) = arouter r

freezeSF δ (seq sf 1 sf 2) = seq (freezeSF δ sf 1) (freezeSF δ sf 2)

freezeSF δ (fan sf 1 sf 2) = fan (freezeSF δ sf 1) (freezeSF δ sf 2)

freezeSF δ (rswitcher sf f) = rswitcher (freezeSF δ sf) f

freezeSF δ (freezer sf) = freezer (freezeSF δ sf)

freezeSF δ (looper sff sfb) = looper (freezeSF δ sff) (freezeSF δ sfb)

freezeSF δ (weakener sf) = weakener (freezeSF δ sf)

freezeSF {cau} δ (prim n) = cprim (stepNode δ n)

freezeSF {dec} δ (prim n) = uncurry dprim (dstepNode δ n)

mutual

step′ : ∀ {d as bs } → ∆t → SF ′ as bs d → Sample as → SF ′ as bs d × Sample bs

step′ δ (prim n) sa = first prim (stepNode δ n sa)

step′ δ (arouter r) sa = (arouter r , stepARouter r sa)

step′ δ (seq sf 1 sf 2) sa with step′ δ sf 1 sa

... | (sf ′1, sb) with step′ δ sf 2 sb

... | (sf ′2, sc) = (seq sf ′1 sf ′2, sc)

step′ δ (fan sf 1 sf 2) sa with step′ δ sf 1 sa | step′ δ sf 2 sa

... | (sf ′1, sb) | (sf
′

2, sc) = (fan sf ′1 sf ′2, (sb, sc))

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 157

step′ δ (rswitcher {d1} {d2} sf f) sa with step′ δ sf sa

... | (sf ′, (sb, nothing)) = (rswitcher sf ′ f , sb)

... | (, (, just e)) with step0 (f e) sa

... | (sf ′, (sb,)) = (weakenSwitch d1 d2 (rswitcher sf ′ f), sb)

step′ δ (freezer sf) sa with step′ δ sf sa

... | (sf ′, sb) = (freezer sf ′, (sb, freezeSF δ sf))

step′ δ (looper sff sfb) sa with dstep′ δ sfb

... | (g, sc) with step′ δ sff (sa, sc)

... | (sff ′, sb) = (looper sff ′ (g sb), sb)

step′ δ (weakener sf) sa = first weakener (step′ δ sf sa)

dstep′ : ∀ {as bs } → ∆t → SF ′ as bs dec → (Sample as → SF ′ as bs dec) × Sample bs

dstep′ δ sf = dstepAux ′ δ sf refl

dstepAux ′ : ∀ {d as bs } → ∆t → SF ′ as bs d → d ≡ dec

→ (Sample as → SF ′ as bs dec) × Sample bs

dstepAux ′ δ (prim n) refl = (first ◦ result) prim (dstepNode δ n)

dstepAux ′ δ (arouter r) ()

dstepAux ′ δ (seq {dec} sf 1 sf 2) refl with dstep′ δ sf 1
... | (g, sb) with step′ δ sf 2 sb

... | (sf ′2, sc) = ((λ sa → seq (g sa) sf ′2), sc)

dstepAux ′ δ (seq {cau} {. } {as } { } {cs } sf 1 sf 2) refl with dstep′ δ sf 2
... | (g, sc) = (aux , sc)

where aux : Sample as → SF ′ as cs dec

aux sa with step′ δ sf 1 sa

... | (sf ′1, sb) = seq sf ′1 (g sb)

dstepAux ′ δ (fan {cau} sf 1 sf 2) ()

dstepAux ′ δ (fan {dec} sf 1 sf 2) refl with dstep′ δ sf 1 | dstep
′ δ sf 2

... | (g1, sb) | (g2, sc) = ((λ sa → fan (g1 sa) (g2 sa)), (sb, sc))

dstepAux ′ δ (rswitcher {cau} sf f) ()

dstepAux ′ δ (rswitcher {dec} {cau} sf f) ()

dstepAux ′ δ (rswitcher {dec} {dec} sf f) refl with dstep′ δ sf

... | (g, (sb, nothing)) = ((λ sa → rswitcher (g sa) f), sb)

... | (, (, just e)) with dstep0 (f e)

... | (g, (sb,)) = ((λ sa → rswitcher (g sa) f), sb)

dstepAux ′ δ (freezer sf) refl with dstep′ δ sf

... | (g, sb) = (freezer ◦ g, (sb, freezeSF δ sf))

dstepAux ′ δ (looper sff sfb) refl with dstep′ δ sff

... | (g, sb) with step′ δ sfb sb

... | (sfb′, sc) = ((λ sa → looper (g (sa, sc)) sfb′), sb)

dstepAux ′ δ (weakener sf) ()

mkSFcau : ∀ {as bs Q } → (∆t → Q → Sample as → Q × Sample bs)

→ (Sample as → Q × Sample bs) → SF as bs cau

mkSFcau f g = cprim (first (cnode f) ◦ g)

mkSFdec : ∀ {as bs Q } → (∆t → Q → (Sample as → Q) × Sample bs)

→ (Sample as → Q) → Sample bs → SF as bs dec

mkSFdec f g = dprim (dnode f ◦ g)

mkSFsource : ∀ {as bs Q } → (∆t → Q → Q × Sample bs) → Q → Sample bs → SF as bs dec

mkSFsource f q = mkSFdec ((result2 ◦ first) const f) (const q)

mkSFtimeless : ∀ {as bs Q } → (Q → Sample as → Q × Sample bs) → Q → SF as bs cau

mkSFtimeless f q = mkSFcau (const f) (f q)

mkSFstateless : ∀ {as bs } → (Sample as → Sample bs) → SF as bs cau

mkSFstateless f = mkSFtimeless (curry (second f)) unit

mkSFchangeless : ∀ {as bs } → Sample bs → SF as bs dec

mkSFchangeless sb = mkSFsource (λ → (unit, sb)) unit sb

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 158

identity : ∀ {as } → SF as as cau

identity = arouter sfId

sfFst : ∀ {as bs } → SF (as, bs) as cau

sfFst = arouter fstProj

sfSnd : ∀ {as bs } → SF (as, bs) bs cau

sfSnd = arouter sndProj

≫ : ∀ {d1 d2 as bs cs } → SF as bs d1 → SF bs cs d2 → SF as cs (d1 ∨ d2)

≫ = seq

&&& : ∀ {d1 d2 as bs cs } → SF as bs d1 → SF as cs d2 → SF as (bs, cs) (d1 ∧ d2)

&&& = fan

rswitch : ∀ {d1 d2 as bs A} → SF as (bs,E A) d1 → (A → SF as (bs,E A) d2) → SF as bs (d1 ∧ d2)

rswitch = rswitcher

freeze : ∀ {d as bs } → SF as bs d → SF as (bs,C (SF as bs d)) d

freeze = freezer

loop : ∀ {d as bs cs } → SF (as, cs) bs d → SF bs cs dec → SF as bs d

loop = looper

weaken : ∀ {d as bs } → SF as bs d → SF as bs cau

weaken = weakener

constantS : ∀ {as A} → A → SF as (S A) dec

constantS = mkSFchangeless

never : ∀ {as A} → SF as (E A) dec

never = mkSFchangeless noEvent

now : ∀ {as } → SF as (E Unit) dec

now = mkSFsource (λ → (unit,noEvent)) unit (event unit)

notYet : ∀ {A} → SF (E A) (E A) cau

notYet = mkSFcau (λ → curry id) (const (unit,noEvent))

filterE : ∀ {A} → (A → Bool) → SF (E A) (E A) cau

filterE p = mkSFstateless (maybeFilter p)

hold : ∀ {A} → A → SF (E A) (S A) cau

hold = mkSFtimeless (λ q → fork ◦ fromMaybe q)

edge : SF (S Bool) (E Unit) cau

edge = mkSFtimeless (λ q i → (i , (if i && not q then event unit else noEvent))) true

when : ∀ {A} → (A → Bool) → SF (C A) (E A) cau

when p = mkSFtimeless (λ q i → (p i , (if p i && not q then event i else noEvent))) true

private

IntegralState = R × R

integrateRectangle : ∆t → IntegralState → (R → IntegralState) × R

integrateRectangle δ (tot , x1) = let tot ′ = tot + (δ ∗ x1)

in ((λ x2 → (tot ′, x2)), tot ′)

integrateTrapezium : ∆t → IntegralState → R → IntegralState × R

integrateTrapezium δ (tot , x1) x2 = let tot ′ = tot + (δ ∗ (x1 + x2) / 2)

in ((tot ′, x2), tot ′)

integralS : SF (S R) (C R) dec

integralS = mkSFdec integrateRectangle (λ x0 → (0, x0)) 0

integralC : SF (C R) (C R) cau

integralC = mkSFcau integrateTrapezium (λ x0 → ((0, x0), 0))

liftC : ∀ {A B } → (A → B) → SF (C A) (C B) cau

liftC = mkSFstateless

liftS : ∀ {A B } → (A → B) → SF (S A) (S B) cau

liftS = mkSFstateless

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 159

liftE : ∀ {A B } → (A → B) → SF (E A) (E B) cau

liftE = mkSFstateless ◦ maybeMap

liftC2 : ∀ {A B Z } → (A → B → Z) → SF (C A,C B) (C Z) cau

liftC2 = mkSFstateless ◦ uncurry

liftS2 : ∀ {A B Z } → (A → B → Z) → SF (S A, S B) (S Z) cau

liftS2 = mkSFstateless ◦ uncurry

merge : ∀ {A B Z } → (A → Z) → (B → Z) → (A → B → Z) → SF (E A,E B) (E Z) cau

merge fa fb fab = mkSFstateless (uncurry (maybeMerge fa fb fab))

join : ∀ {A B Z } → (A → B → Z) → SF (E A,E B) (E Z) cau

join = mkSFstateless ◦ uncurry ◦ maybeMap2

sampleWithC : ∀ {A B Z } → (A → B → Z) → SF (C A,E B) (E Z) cau

sampleWithC f = mkSFstateless (uncurry (maybeMap ◦ f))

sampleWithS : ∀ {A B Z } → (A → B → Z) → SF (S A,E B) (E Z) cau

sampleWithS f = mkSFstateless (uncurry (maybeMap ◦ f))

fromS : ∀ {A} → SF (S A) (C A) cau

fromS = mkSFstateless id

dfromS : ∀ {A} → A → SF (S A) (C A) dec

dfromS = mkSFdec (λ q → (id , q)) id

C.4 Haskell Embedding of N-ary FRP with Feedback

Most of the source code for the Haskell embedding of N-ary FRP with Feedback (Section 7.6)

was omitted. That omitted code can be found in this section. Code that is entirely unmodified

from the embedding in Appendix C.2 is not repeated.

data Node :: ∗ → ∗ → ∗ → ∗ where

CNode :: (Dt → q → Sample as → (q,Sample bs))→ q → Node as bs Cau

DNode :: (Dt → q → ((Sample as → q),Sample bs))→ q → Node as bs Dec

stepNode :: Dt → Node as bs d → Sample as → (Node as bs d ,Sample bs)

stepNode dt (CNode f q) sa = first (CNode f) (f dt q sa)

stepNode dt (DNode f q) sa = first (λg → DNode f (g sa)) (f dt q)

dstepNode :: Dt → Node as bs Dec → ((Sample as → Node as bs Dec),Sample bs)

dstepNode dt (DNode f q) = first (λg sa → DNode f (g sa)) (f dt q)

data SF :: ∗ → ∗ → ∗ → ∗ where

CPrim :: (Sample as → (Node as bs Cau,Sample bs)) → SF as bs Cau

DPrim :: (Sample as → Node as bs Dec)→ Sample bs → SF as bs Dec

ARouter :: AtomicRouter as bs → SF as bs Cau

Seq :: Decoupled d1 ⇒ SF as bs d1 → SF bs cs d2 → SF as cs (d1 ∨ d2)

Fan :: Decoupled d1 ⇒ SF as bs d1 → SF as cs d2 → SF as (bs, cs) (d1 ∧ d2)

Switch :: Decoupled d1 ⇒ SF as (bs,E e) d1 → (e → SF as bs d2)→ SF as bs (d1 ∧ d2)

Freeze :: SF as bs d → SF as (bs,C (SF as bs d)) d

Loop :: SF (as, cs) bs d → SF bs cs Dec → SF as bs d

Weaken :: SF as bs d → SF as bs Cau

data SF ′ :: ∗ → ∗ → ∗ → ∗ where

Prim′ :: Decoupled d ⇒ Node as bs d → SF ′ as bs d

ARouter′ :: AtomicRouter as bs → SF ′ as bs Cau

Seq′ :: Decoupled d1 ⇒ SF ′ as bs d1 → SF ′ bs cs d2 → SF ′ as cs (d1 ∨ d2)

Fan′ :: Decoupled d1 ⇒ SF ′ as bs d1 → SF ′ as cs d2 → SF ′ as (bs, cs) (d1 ∧ d2)

Switch′ :: Decoupled d1 ⇒ SF ′ as (bs,E e) d1 → (e → SF as bs d2)→ SF ′ as bs (d1 ∧ d2)

Freeze′ :: SF ′ as bs d → SF ′ as (bs,C (SF as bs d)) d

Loop′ :: SF ′ (as, cs) bs d → SF ′ bs cs Dec → SF ′ as bs d

Weaken′ :: SF ′ as bs d → SF ′ as bs Cau

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 160

class Decoupled d where

drep :: SF as bs d → DRep d

drepf :: (e → SF as bs d)→ DRep d

drep′ :: SF ′ as bs d → DRep d

instance Decoupled Cau where

drep = Cau

drepf = Cau

drep′ = Cau

instance Decoupled Dec where

drep = Dec

drepf = Dec

drep′ = Dec

weakenSwitch :: DRep d1 → SF ′ as bs d2 → SF ′ as bs (d1 ∧ d2)

weakenSwitch Cau sf = Weaken′ sf

weakenSwitch Dec sf = sf

step0 :: SF as bs d → Sample as → (SF ′ as bs d ,Sample bs)

step0 (CPrim f) sa = first Prim′ (f sa)

step0 (DPrim f sb) sa = (Prim′ (f sa), sb)

step0 (ARouter r) sa = (ARouter′ r , stepARouter r sa)

step0 (Seq sf1 sf2) sa = let (sf1 ′, sb) = step0 sf1 sa

(sf2 ′, sc) = step0 sf2 sb

in (Seq′ sf1 ′ sf2 ′, sc)

step0 (Fan sf1 sf2) sa = let (sf1 ′, sb) = step0 sf1 sa

(sf2 ′, sc) = step0 sf2 sa

in (Fan′ sf1 ′ sf2 ′, (sb, sc))

step0 (Switch sf f) sa = case step0 sf sa of

(sf ′, (sb,Nothing))→ (Switch′ sf ′ f , sb)

(, (, Just e)) → first (weakenSwitch (drep sf)) (step0 (f e) sa)

step0 (Freeze sf) sa = let (sf ′, sb) = step0 sf sa

in (Freeze′ sf ′, (sb, sf))

step0 (Loop sff sfb) sa = case dstep0 sfb of

(g, sc)→ case step0 sff (sa, sc) of

(sff ′, sb)→ (Loop′ sff ′ (g sb), sb)

step0 (Weaken sf) sa = first Weaken′ (step0 sf sa)

dstep0 :: SF as bs Dec → ((Sample as → SF ′ as bs Dec),Sample bs)

dstep0 (DPrim f sb) = (Prim′.f , sb)

dstep0 (Seq sf1 sf2) = case drep sf1 of

Dec→ let (g, sb) = dstep0 sf1

(sf2 ′, sc) = step0 sf2 sb

in ((λsa → Seq′ (g sa) sf2 ′), sc)

Cau→ let (g, sc) = dstep0 sf2

in (λsa → let (sf1 ′, sb) = step0 sf1 sa

in Seq′ sf1 ′ (g sb)

, sc)

dstep0 (Fan sf1 sf2) = case drep sf1 of

Dec→ let (g1 , sb) = dstep0 sf1

(g2 , sc) = dstep0 sf2

in ((λsa → Fan′ (g1 sa) (g2 sa)), (sb, sc))

dstep0 (Switch sf f) = case drep sf of

Dec→ case dstep0 sf of

(g, (sb,Nothing))→ ((λsa → Switch′ (g sa) f), sb)

(, (, Just e)) → dstep0 (f e)

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 161

dstep0 (Freeze sf) = let (g, sb) = dstep0 sf

in (Freeze′.g, (sb, sf))

dstep0 (Loop sff sfb) = case dstep0 sff of

(g, sb)→ case step0 sfb sb of

(sfb′, sc)→ ((λsa → Loop′ (g (sa, sc)) sfb′), sb)

freezeSF :: Dt → SF ′ as bs d → SF as bs d

freezeSF dt (ARouter′ r) = ARouter r

freezeSF dt (Seq′ sf1 sf2) = Seq (freezeSF dt sf1) (freezeSF dt sf2)

freezeSF dt (Fan′ sf1 sf2) = Fan (freezeSF dt sf1) (freezeSF dt sf2)

freezeSF dt (Switch′ sf f) = Switch (freezeSF dt sf) f

freezeSF dt (Freeze′ sf) = Freeze (freezeSF dt sf)

freezeSF dt (Loop′ sff sfb) = Loop (freezeSF dt sff) (freezeSF dt sfb)

freezeSF dt (Weaken′ sf) = Weaken (freezeSF dt sf)

freezeSF dt (Prim′ n) = case n of

CNode → CPrim (stepNode dt n)

DNode → uncurry DPrim (dstepNode dt n)

step′ :: Dt → SF ′ as bs d → Sample as → (SF ′ as bs d ,Sample bs)

step′ dt (Prim′ n) sa = first Prim′ (stepNode dt n sa)

step′ dt (ARouter′ r) sa = (ARouter′ r , stepARouter r sa)

step′ dt (Seq′ sf1 sf2) sa = let (sf1 ′, sb) = step′ dt sf1 sa

(sf2 ′, sc) = step′ dt sf2 sb

in (Seq′ sf1 ′ sf2 ′, sc)

step′ dt (Fan′ sf1 sf2) sa = let (sf1 ′, sb) = step′ dt sf1 sa

(sf2 ′, sc) = step′ dt sf2 sa

in (Fan′ sf1 ′ sf2 ′, (sb, sc))

step′ dt (Switch′ sf f) sa = case step′ dt sf sa of

(sf ′, (sb,Nothing))→ (Switch′ sf ′ f , sb)

(, (, Just e)) → first (weakenSwitch (drep′ sf)) (step0 (f e) sa)

step′ dt (Freeze′ sf) sa = let (sf ′, sb) = step′ dt sf sa

in (Freeze′ sf ′, (sb, freezeSF dt sf))

step′ dt (Loop′ sff sfb) sa = case dstep′ dt sfb of

(g, sc)→ case step′ dt sff (sa, sc) of

(sff ′, sb)→ (Loop′ sff ′ (g sb), sb)

step′ dt (Weaken′ sf) sa = first Weaken′ (step′ dt sf sa)

dstep′ :: Dt → SF ′ as bs Dec → ((Sample as → SF ′ as bs Dec),Sample bs)

dstep′ dt (Prim′ n) = (first .result) Prim′ (dstepNode dt n)

dstep′ dt (Seq′ sf1 sf2) = case drep′ sf1 of

Dec→ let (g, sb) = dstep′ dt sf1

(sf2 ′, sc) = step′ dt sf2 sb

in ((λsa → Seq′ (g sa) sf2 ′), sc)

Cau→ let (g, sc) = dstep′ dt sf2

in (λsa → let (sf1 ′, sb) = step′ dt sf1 sa

in Seq′ sf1 ′ (g sb)

, sc)

dstep′ dt (Fan′ sf1 sf2) = case drep′ sf1 of

Dec→ let (g1 , sb) = dstep′ dt sf1

(g2 , sc) = dstep′ dt sf2

in ((λsa → Fan′ (g1 sa) (g2 sa)), (sb, sc))

dstep′ dt (Switch′ sf f) = case drep′ sf of

Dec→ case dstep′ dt sf of

(g, (sb,Nothing))→ ((λsa → Switch′ (g sa) f), sb)

(, (, Just e)) → dstep0 (f e)

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 162

dstep′ dt (Freeze′ sf) = let (g, sb) = dstep′ dt sf

in (Freeze′.g, (sb, freezeSF dt sf))

dstep′ dt (Loop′ sff sfb) = case dstep′ dt sff of

(g, sb)→ case step′ dt sfb sb of

(sfb′, sc)→ ((λsa → Loop′ (g (sa, sc)) sfb′), sb)

mkSFcau :: (Dt → q → Sample as → (q,Sample bs))→ (Sample as → (q,Sample bs))→ SF as bs Cau

mkSFcau f g = CPrim (first (CNode f).g)

mkSFdec :: (Dt → q → ((Sample as → q),Sample bs))→ (Sample as → q)→ Sample bs → SF as bs Dec

mkSFdec f g = DPrim (DNode f .g)

mkSFsource :: (Dt → q → (q,Sample bs))→ q → Sample bs → SF as bs Dec

mkSFsource f q = mkSFdec ((result2 .first) const f) (const q)

mkSFtimeless :: (q → Sample as → (q,Sample bs))→ q → SF as bs Cau

mkSFtimeless f q = mkSFcau (const f) (f q)

mkSFstateless :: (Sample as → Sample bs)→ SF as bs Cau

mkSFstateless f = mkSFtimeless (curry (second f)) ()

mkSFchangeless :: Sample bs → SF as bs Dec

mkSFchangeless sb = mkSFsource (λ → ((), sb)) () sb

identity :: SF as as Cau

identity = ARouter SFId

sfFst :: SF (as, bs) as Cau

sfFst = ARouter Fst

sfSnd :: SF (as, bs) bs Cau

sfSnd = ARouter Snd

(≫) :: Decoupled d1 ⇒ SF as bs d1 → SF bs cs d2 → SF as cs (d1 ∨ d2)

(≫) = Seq

(&&&) :: Decoupled d1 ⇒ SF as bs d1 → SF as cs d2 → SF as (bs, cs) (d1 ∧ d2)

(&&&) = Fan

switch :: Decoupled d1 ⇒ SF as (bs,E e) d1 → (e → SF as bs d2)→ SF as bs (d1 ∧ d2)

switch = Switch

freeze :: SF as bs d → SF as (bs,C (SF as bs d)) d

freeze = Freeze

loop :: SF (as, cs) bs d → SF bs cs Dec → SF as bs d

loop = Loop

weaken :: SF as bs d → SF as bs Cau

weaken = Weaken

constantS :: a → SF as (S a) Dec

constantS = mkSFchangeless

never :: SF as (E a) Dec

never = mkSFchangeless noEvent

now :: SF as (E ()) Dec

now = mkSFsource (λ → ((),noEvent)) () (event ())

notYet :: SF (E a) (E a) Cau

notYet = mkSFcau (λ → curry id) (const ((),noEvent))

filterE :: (a → Bool)→ SF (E a) (E a) Cau

filterE p = mkSFstateless (maybeFilter p)

hold :: a → SF (E a) (S a) Cau

hold = mkSFtimeless (λq → fork .fromMaybe q)

edge :: SF (S Bool) (E ()) Cau

edge = mkSFtimeless (λq i → (i , (if i && not q then event () else noEvent))) True

when :: (a → Bool)→ SF (C a) (E a) Cau

when p = mkSFtimeless (λq i → (p i , (if p i && not q then event i else noEvent))) True

APPENDIX C. SOURCE CODE FOR EMBEDDINGS OF N-ARY FRP 163

type IntegralState = (Double,Double)

integrateRectangle :: Dt → IntegralState → ((Double → IntegralState),Double)

integrateRectangle dt (tot , x1) = let tot ′ = tot + (dt ∗ x1)

in ((λx2 → (tot ′, x2)), tot ′)

integrateTrapezium :: Dt → IntegralState → Double → (IntegralState,Double)

integrateTrapezium dt (tot , x1) x2 = let tot ′ = tot + (dt ∗ (x1 + x2) / 2)

in ((tot ′, x2), tot ′)

integralS :: SF (S Double) (C Double) Dec

integralS = mkSFdec integrateRectangle (λx0 → (0, x0)) 0

integralC :: SF (C Double) (C Double) Cau

integralC = mkSFcau integrateTrapezium (λx0 → ((0, x0), 0))

liftC :: (a → b)→ SF (C a) (C b) Cau

liftC = mkSFstateless

liftS :: (a → b)→ SF (S a) (S b) Cau

liftS = mkSFstateless

liftE :: (a → b)→ SF (E a) (E b) Cau

liftE = mkSFstateless.fmap

liftC2 :: (a → b → z)→ SF (C a,C b) (C z) Cau

liftC2 = mkSFstateless.uncurry

liftS2 :: (a → b → z)→ SF (S a,S b) (S z) Cau

liftS2 = mkSFstateless.uncurry

merge :: (a → z)→ (b → z)→ (a → b → z)→ SF (E a,E b) (E z) Cau

merge fa fb fab = mkSFstateless (uncurry (maybeMerge fa fb fab))

join :: (a → b → z)→ SF (E a,E b) (E z) Cau

join = mkSFstateless.uncurry .liftM2

sampleWithC :: (a → b → z)→ SF (C a,E b) (E z) Cau

sampleWithC f = mkSFstateless (uncurry (fmap.f))

sampleWithS :: (a → b → z)→ SF (S a,E b) (E z) Cau

sampleWithS f = mkSFstateless (uncurry (fmap.f))

fromS :: SF (S a) (C a) Cau

fromS = mkSFstateless id

dfromS :: a → SF (S a) (C a) Dec

dfromS = mkSFdec (λ q → (id , q)) id

	1 Introduction
	1.1 Reactive Languages
	1.2 Embedded Domain-Specific Languages
	1.3 Contributions and Thesis Structure

	2 Agda and Notation
	2.1 Introduction to Agda
	2.1.1 Overview
	2.1.2 Data Types
	2.1.3 Functions
	2.1.4 Propositions and Proofs

	2.2 AgdaFRP

	3 Functional Reactive Programming
	3.1 Why Functional Reactive Programming?
	3.2 FRP Fundamentals
	3.2.1 Continuous-Time Signals
	3.2.2 Signal Functions
	3.2.3 Discrete-Time Signals
	3.2.4 Structural Dynamism
	3.2.5 Signal Generators

	3.3 Classic FRP
	3.3.1 Behaviours and Events
	3.3.2 CFRP Primitives
	3.3.3 Switching between Behaviours
	3.3.4 Example: Modelling Bouncing Balls
	3.3.5 Retaining Signals

	3.4 Unary FRP
	3.4.1 Signals, Signal Functions, and Events
	3.4.2 Primitive Signal Functions
	3.4.3 Primitive Routing Combinators
	3.4.4 Switching Combinators
	3.4.5 Freezing Signal Functions
	3.4.6 Example UFRP Programming
	3.4.7 Single-Kinded Signals

	3.5 Advantages of a Signal-Function Abstraction
	3.5.1 Implementation Implications
	3.5.2 Routing
	3.5.3 Switching
	3.5.4 Signal Function Objects
	3.5.5 Other Applications

	3.6 Conclusions

	4 N-ary FRP
	4.1 N-ary FRP Conceptual Model
	4.1.1 Multi-Kinded Signals
	4.1.2 N-ary Signal Functions
	4.1.3 Signal Vector Descriptors
	4.1.4 Refined Signals and Signal Functions
	4.1.5 Why Change Prefixes?

	4.2 N-ary FRP Primitives
	4.2.1 Static Routers
	4.2.2 Dynamic Combinators
	4.2.3 Lifting Functions
	4.2.4 Primitive Signal Functions

	4.3 Example N-ary FRP Programs
	4.3.1 Additional Combinators
	4.3.2 Library Signal Functions

	4.4 Totality and Recursion
	4.5 Conclusions

	5 Embedded Implementations of N-ary FRP
	5.1 Pull-Based Sampling
	5.2 Agda Embedding
	5.2.1 Network Nodes
	5.2.2 Routing
	5.2.3 A Distinct Initialisation Step
	5.2.4 Primitives

	5.3 Haskell Embedding
	5.3.1 Language Extensions
	5.3.2 Signals and Samples
	5.3.3 Time and Recursion
	5.3.4 Interaction with the Outside World

	5.4 Delaying Signals
	5.5 Conclusions

	6 Temporal Logic
	6.1 Introduction
	6.2 Temporal Operators
	6.2.1 Lifted Logical Operators
	6.2.2 Priorean Operators

	6.3 Introducing and Eliminating Temporal Predicates
	6.4 Properties of Time
	6.5 Properties of N-ary FRP
	6.5.1 Pointwise Sample Equality
	6.5.2 Causality and Decoupledness
	6.5.3 Statelessness
	6.5.4 Properties of Primitives

	6.6 Conclusions

	7 Type-safe Feedback
	7.1 Causality Analysis
	7.2 Feedback Combinators
	7.2.1 Well-Defined Feedback
	7.2.2 Alternative Feedback Combinators

	7.3 Type System for N-ary FRP with Feedback
	7.3.1 Decoupledness Indices
	7.3.2 Refined Primitives
	7.3.3 An Additional Feedback Combinator

	7.4 Feedback Example
	7.4.1 Saving and Resuming
	7.4.2 Hypothetical Syntax

	7.5 Extending the Agda Embedding
	7.5.1 A Decoupled Transition Function
	7.5.2 Nodes
	7.5.3 Signal Functions
	7.5.4 Constructing Primitives
	7.5.5 Drawbacks of the Agda Embedding

	7.6 Extending the Haskell Embedding
	7.6.1 Decoupledness Indices
	7.6.2 Drawbacks of the Haskell Embedding

	7.7 Conclusions

	8 Change and Optimisation
	8.1 FRP Optimisation
	8.1.1 Basic FRP Implementation Strategies
	8.1.2 Optimisation Opportunities

	8.2 Measuring Efficiency
	8.3 Change Properties
	8.3.1 Unchanging Signals
	8.3.2 Another Pointwise Signal Equality
	8.3.3 Change Properties of Signal Functions
	8.3.4 Implications between Properties
	8.3.5 Properties of N-ary FRP Primitives

	8.4 Implementing Signal Function Properties
	8.5 Suggested Optimisations
	8.5.1 Structural Optimisation
	8.5.2 Change Propagation
	8.5.3 Interaction between Optimisations and Switching
	8.5.4 Testing Optimisations

	8.6 Conclusions

	9 Extensions to N-ary FRP
	9.1 Occurrences Immediately After a Point
	9.1.1 Additional Primitives
	9.1.2 Unresolved Issues
	9.1.3 Summary and Related Work

	9.2 Type-safe Initialisation
	9.2.1 Infinitesimal Delays
	9.2.2 Initialisation Descriptors
	9.2.3 Subtyping
	9.2.4 Refined Primitives
	9.2.5 Summary and Related Work

	9.3 Decoupledness Matrices
	9.3.1 Motivation
	9.3.2 Type System
	9.3.3 Retyping the Primitives
	9.3.4 Summary and Related Work

	9.4 Conclusions

	10 Related Work
	10.1 Conceptual Models of FRP
	10.2 Static Safety Checks
	10.3 Optimisation of Reactive Languages
	10.4 Conclusions

	11 Summary and Future Work
	11.1 Summary
	11.2 Future Work

	Bibliography
	A Utility Functions
	A.1 Combinators
	A.2 Booleans
	A.3 Lists
	A.4 Maybe
	A.5 Intervals

	B N-ary FRP Conceptual Definitions
	B.1 Utility Functions
	B.2 Lifting Functions
	B.3 Delaying Signals
	B.4 Filtering Event Signals
	B.5 Dynamic Combinators
	B.5.1 Advancing Signals
	B.5.2 Splicing
	B.5.3 Assuming the Sample Time
	B.5.4 Switch
	B.5.5 Freeze

	B.6 Miscellaneous Signal Functions
	B.7 Rising Edge Detection (when)

	C Source Code for Embeddings of N-ary FRP
	C.1 The Delay Primitives
	C.2 Haskell Embedding of N-ary FRP
	C.3 Agda Embedding of N-ary FRP with Feedback
	C.4 Haskell Embedding of N-ary FRP with Feedback

